Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 8, pp 2843–2851 | Cite as

All-optical S-R flip flop using 2-D photonic crystal

  • Tamer A. Moniem
Article

Abstract

The photonic crystals (PhC) draw significant attention to build all optical logic devices and considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel all optical SR flip flop memory based on two optical NOR gates using 2D PhC. The design of optical Flip Flop is based on four nonlinear photonic crystal ring resonator and T-type waveguide. The total size of the proposed optical memory flip flop is equal to 30 μm × 30 μm. The structure has lattice constant ‘a’ is equal to 630 nm and bandgap range from 0.32 to 044. The flip flop design has a switching time in few Picoseconds and low power input of 50 mW. The PhC structure has a square lattice of silicon rod with refractive index of 3.39 in air. The overall design and the results are discussed through the experimental implementation and the numerically simulation to confirm its operation and feasibility.

Keywords

Photonic crystals PCRR Optical flip flops Optical logic gates 

References

  1. Abbasi, A., Noshad, M., Ranjbar, R., Reza, K.: Ultra compact and fast all optical flip flop design in photonic crystal platform. Opt. Commun. 285, 5073–5078 (2012)CrossRefADSGoogle Scholar
  2. Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am B 26, 10–16 (2009)CrossRefADSGoogle Scholar
  3. Dang, Z., Breese, M.B.H., Recio-Sánchez, G., Azimi, S., Song, J., Liang, H., Banas, A., Torres-Costa, V., Martín-Palma, R.J.: Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method. Nanoscale Res. Lett. 7(1), 1–7 (2012)Google Scholar
  4. Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan and Claypool, Lexington (2010)Google Scholar
  5. Ghadrdan, M., Mansouri-Birjandi, M.A.: All-optical NOT logic gate based on photonic crystals. Int. J. Electr. Comput. Eng. (IJECE) 3(4), 478–482 (2013)Google Scholar
  6. Ghaffari, A., Monifi, F., Djivid, M.: Analysis of photonic crystal power splitters with different configurations. J. Appl. Sci. 8(8), 1416–1425 (2008)CrossRefADSGoogle Scholar
  7. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)CrossRefADSGoogle Scholar
  8. Kabilan, A.P., Christina, X.S., Caroline, P.E.: Design of optical logic gates using photonic crystal. Proceedings of International Conference on Internet, pp 1–4 (2009)Google Scholar
  9. Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Optik 124(17), 2966–2968 (2013)CrossRefADSGoogle Scholar
  10. Lin, W.-P., Hsu, Y.-F., Kuo, H.-L.: Design of optical NOR logic gates using two dimension photonic crystals. Am. J. Mod. Phys. 2(3), 144–147 (2013)CrossRefGoogle Scholar
  11. Liu, Y., Qin, F., Meng, Z.-M., Zhou, F., Mao, Q.-H., Li, Z.-Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19(3), 1945–1953 (2011)CrossRefADSGoogle Scholar
  12. Loňcar, M., Doll, T., Vǔcković, J., Scherer, A.: Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 18(10), 1402–1411 (2000)CrossRefADSGoogle Scholar
  13. Mano, M.M.: Computer engineering hardware design. Prantice Hall international (1988)Google Scholar
  14. Massaro, A.: Photonic Crystals: Introduction, Applications and Theory, 1st edn. In Tech publisher, Rijeka (2012)CrossRefGoogle Scholar
  15. Shinya, A., Mitsugi, S., Tanabe, T., Notomi, M., Yokohama, I., Takara, H., Kawanishi, S.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006)CrossRefADSGoogle Scholar
  16. Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., Kuramochi, E.: All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87(15), 151112 (2005)Google Scholar
  17. Wu, Y.D., Hsu, K.W., Shih, T.T., Lee, J.J.: New design of four-channel add-drop filters based on double resonant cavity photonic crystals. J. Opt. Soc. Am. B 26, 640–644 (2009)CrossRefADSGoogle Scholar
  18. Yang, Y.-P., Yang, I.-C., Chang C.H., Tsai, Y.-T., Lee, K.-Y., Tsai, Y.-R., Tu, Y.-S., Liao, S.-F., Huang, C.-C., Lin, Y.-J., Lee, W.-Y., Lee, C.-C.: Binary operating in all-optical logic gates based on photonic crystals. 2012 International Symposium on Computer, Consumer and Control (2012)Google Scholar
  19. Zoiros, K.E., Houbavlis, T., Kalyvas, M.: Ultra-high speed all-optical shift registers and their applications in OTDM networks. Opt. Quantum Electron. 36, 1005–1053 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Canadian International College CICNew CairoEgypt

Personalised recommendations