Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 7, pp 1545–1555 | Cite as

A wavelength conversion scheme based on SPM and FWM for distributed satellites system with multiple wavelength channels

  • Yi Dong
  • Shanghong Zhao
  • Xiaomei Zheng
  • Xiaoyan Zhang
  • Chen Dong
  • Zihang Zhu
Article
  • 140 Downloads

Abstract

Aiming at the characteristics of distributed satellites system that the information exchanging and wavelength conversion are frequent but the payload is limited, a wavelength conversion scheme based on the self-phase modulation (SPM) and the four-wave mixing (FWM) is put forward, which can substitute several pump lasers in case of multiple wavelength channels. By utilizing the SPM in high nonlinear fiber to broaden the spectrum of initial signal, a pre-conversion signal is obtained as the pump light for wavelength conversion through an offset filtering. Then the wavelength conversion is realized based on the FWM in semiconductor optical amplifier. The principle of the scheme is deduced theoretically, and the relationship between conversion properties and structural parameters is analyzed. The simulation results show that the scheme can improve the quality of signal to some extent when completing a wavelength conversion, the Q factor improvement can be of 3 dB at most, while the conversion efficiency can reach to 20 dB.

Keywords

All-optical wavelength conversion Self-phase modulation Offset filtering Four-wave mixing Conversion efficiency 

References

  1. Agrawal, G.P., Anders Olsson, N.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25(11), 2297–2306 (1989)ADSCrossRefGoogle Scholar
  2. Baveja, P.P., Maywar, D.N., Kaplan, A.M.: Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission. IEEE J. Quantum Electron. 46(9), 1396–1403 (2010)ADSCrossRefGoogle Scholar
  3. Baveja, P.P., Maywar, D.N., Agrawal, G.P.: Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery. IEEE J. Sel. Top. Quantum Electron. 18(2), 899–908 (2012)CrossRefGoogle Scholar
  4. Baveja, P.P., Xiao, Y., Arora, S., et al.: All-optical semiconductor optical amplifier-based wavelength converters with sub-mw pumping. IEEE Photon. Technol. Lett. 25(1), 78–80 (2013)CrossRefGoogle Scholar
  5. Caini, C., Firrincieli, R., Marchese, M., et al.: Transport layer protocols and architectures for satellite networks. Int. J. Satellite Commun. Netw. 25(1), 1–26 (2007)CrossRefGoogle Scholar
  6. de Oliveira Ribeiro, R., Jose Pontes, M., Lima, R.A.A., et al.: Time response of ASE-XGM wavelength conversion in SOAs using ultra-short pulses. Microw. Opt. Technol. Lett. 49(7), 1541–1544 (2007)CrossRefGoogle Scholar
  7. Hsieh, J.-T., Gong, P.-M., Lee, S.-L., et al.: Improved dynamic characteristics on four-wave mixing wavelength conversion in light-holding SOAs. IEEE J. Sel. Top. Quantum Electron. 10(5), 1187–1196 (2004)CrossRefGoogle Scholar
  8. Junqiang, Sun, Xinliang, Zhang, Deming, Liu, et al.: Analytical solution of four-wave mixing between picosecond optical pulses in semiconductor optical amplifiers with cross-gain modulation and probe depletion[J]. Microw. Opt. Technol. Lett. 28(1), 78–82 (2001)CrossRefGoogle Scholar
  9. Karapantazis, S., Papapetrou, E., Pavlidou, F.N.: Multiservice on-demand routing in LEO satellite networks. IEEE Trans. Wirel. Commun. 8(1), 107–112 (2009)CrossRefGoogle Scholar
  10. Lee, K., Lima, S.D., Jhon, Y.M., et al.: Broadcasting in colorless WDM-PON using spectrum-sliced wavelength conversion. Opt. Fiber Technol. 18(2), 112–116 (2012)ADSCrossRefGoogle Scholar
  11. Ma, J., Tan, L., Shen, T.: Analysis of capacity and outage probability for intersatellite optical communications in the presence of random pointing jitter[J]. J. Russ. Laser Res. 33(2), 143–151 (2012)CrossRefGoogle Scholar
  12. Matsuura, M., Kishi, N., Miki, T.: All-optical wavelength conversion with large wavelength hopping by utilizing multistage cascaded SOA-based wavelength converters [J]. IEEE Photon. Technol. Lett. 18(8), 926–928 (2006)ADSCrossRefGoogle Scholar
  13. Mecozzi, A., Mork, J.: Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers. IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997)CrossRefGoogle Scholar
  14. Sabatini, M., Izzo, D., et al.: Special inclinations allowing minimal drift orbits for formation flying satellites. J. Guid. Control Dyn. 31(1), 94–100 (2008)ADSCrossRefGoogle Scholar
  15. Taleb, T., Kato, N., Nemoto, Y.: Recent trends in IP/NGEO satellite communication systems: transport, routing, and mobility management concerns[J]. IEEE Wirel. Commun. 12(5), 63–69 (2005)CrossRefGoogle Scholar
  16. Wason, A., Kaler, R.S.: Blocking in wavelength-routed all-optical WDM network with wavelength conversion. Optik 122(7), 631–634 (2011)ADSCrossRefGoogle Scholar
  17. Zhang, Z., Yang, Y.: On-line optimal wavelength assignment in wdm networks with shared wavelength converter pool. IEEE/ACM Trans. Netw. 15(1), 234–245 (2007)CrossRefGoogle Scholar
  18. Zhang, L., Jinlong, Y., Hao, H., et al.: Regenerative multi-wavelength conversion at \(4\times 10\)-Gbit/s using a single SOA. Microw. Opt. Technol. Lett. 51(2), 466–469 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yi Dong
    • 1
  • Shanghong Zhao
    • 1
  • Xiaomei Zheng
    • 2
  • Xiaoyan Zhang
    • 1
  • Chen Dong
    • 1
  • Zihang Zhu
    • 1
  1. 1.Institute of Information and NavigationAir Force Engineering UniversityXi’anChina
  2. 2.The Air Force Harbin Flight CollegeHarbinChina

Personalised recommendations