Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 1, pp 55–65 | Cite as

Optical properties of an opal with a planar defect fabricated by inverse Schaefer and Langmuir–Blodgett techniques

  • P. N. Hong
  • P. Bénalloul
  • Z. Guennouni-Assimi
  • R. Farha
  • C. Bourdillon
  • M.-C. Fauré
  • M. Goldmann
  • W. Marcillac
  • L. Coolen
  • A. Maître
  • C. Schwob
Article

Abstract

A silica monolayer has been introduced between tow artificial silica opals using Langmuir Blodgett and inverse Schaefer transfer techniques. The structure and optical properties of the sandwich structure have been characterized by atomic force microscopy, scanning electron microscopy and specular reflection and transmission spectra. The quality of the defect mode inside the stopband made by inverse Schaefer technique is as good as the one obtained by the most commonly used Langmuir–Blodgett technique. Finite difference time domain simulations have been performed and show very good agreement with experimental result.

Keywords

3D photonic crystals Defect layer Specular reflection spectroscopy 

Notes

Acknowledgments

The authors would like to thank Eric Charron (INSP) for the work on the goniometer setup, Emmanuelle Lacaze (INSP) for AFM measurements, Dominique Demaille (INSP) for SEM measurements, Nébéwia Griffete and Claire Mangeney (ITODYS) for their helps on functionalization of silica particles. Kifle Aregahegn and Juan-Sebastian Restrepo for their contributions, during their internship in INSP, respectively on synthesis of silica particles and opals and on simulations. The collaboration between INSP and IMS was supported by a Projet International de Coopération Scientifique (PICS 5724) between CNRS and VAST.

References

  1. Avoine, A., Hong, P.N., Frederich, H., Frigerio, J-M., Coolen, L., Schwob, C., Nga, P. T., Gallas, B. and Maître, A.: Measurement and modelization of silica opal reflection properties: optical determination of the silica index. Phys. Rev. B 86, 165432 (2012)Google Scholar
  2. Avoine, A., Hong, P.N., Frederich, H., Aregahegn, K., Frigerio, J.-M., Coolen, L., Schwob, C., Nga, P.T., Gallas, B., Maître, A.: Measurement and modelization of silica opal optical properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015005 (2014)CrossRefGoogle Scholar
  3. Barth, M., Schuster, R., Gruber, A., Cichos, F.: Imaging single quantum dots in three-dimensional photonic crystals. Phys. Rev. Lett. 96, 243902 (2006)ADSCrossRefGoogle Scholar
  4. Diep, L.N., Liang, W.P., Lin, J.H., Hsu, C.C.: Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques. Opt. Express 13, 5331–5337 (2005)ADSCrossRefGoogle Scholar
  5. Fan, S.H., Winn, J.N., Devenyi, A., Chen, J.C., Meade, R.D., Joannopoulos, J.D.: Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B 12, 1267–1272 (1995)Google Scholar
  6. Fink, Y., Winn, J.N., Fan, S.H., Chen, C.P., Michel, J., Joannopoulos, J.D., Thomas, E.L.: A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)ADSCrossRefGoogle Scholar
  7. Hong, P.N., Benalloul, P., Coolen, L., Maître, A., Schwob, C.: A sputtered-silica defect layer between two artificial silica opals: an efficient way to engineer well-ordered sandwich structures. J. Mater. Chem. C 1, 5381–5386 (2013)CrossRefGoogle Scholar
  8. John, S., Quang, T.: Collective switching and inversion without fluctuation of two-level atoms in confined photonic systems. Phys. Rev. Lett. 78, 1888–1891 (1997)Google Scholar
  9. Juarez, B.H., Golmayo, D., Postigo, Pa, Lopez, C.: Selective formation of inverted opals by electron-beam lithography. Adv. Mater. 16, 1732–1736 (2004)CrossRefGoogle Scholar
  10. Knight, J.C., Broeng, J., Birks, T.A., Russell, P.S.J.: Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)CrossRefGoogle Scholar
  11. Lee, W., Pruzinsky, S., Braun, P.V.: Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv. Mater. 14, 271–274 (2002)CrossRefGoogle Scholar
  12. Liu, G.Q., Hu, H.H., Liao, Y.B., Wang, Z.S., Chen, Y., Liu, Z.M.: Synthesis and photonic band gap characterization of high quality photonic crystal heterostructures. Optik Int. J. Light Electron Opt. 122, 9–13 (2011)CrossRefGoogle Scholar
  13. Lodahl, P., van Driel, A.F., Nikolaev, I.S., Irman, A., Overgaag, K., Vanmaekelbergh, D., Vos, W.L.: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004)ADSCrossRefGoogle Scholar
  14. Massé, P., Reculusa, S., Clays, K., Ravaine, S.: Tailoring planar defect in three-dimensional colloidal crystals. Chem. Phys. Lett. 422, 251–255 (2006)ADSCrossRefGoogle Scholar
  15. Massé, P., Vallee, R.A.L., Dechezelles, J.-F., Rosselgong, J., Cloutet, E., Cramail, H., Zhao, X.S., Ravaine, S.: Effects of the position of a chemically or size-induced planar defect on the optical properties of colloidal crystals. J. Phys. Chem. C 113, 14487–14492 (2009)CrossRefGoogle Scholar
  16. Meade, R., Devenyi, A., Joannopoulos, J., Alerhand, O., Smith, D., Kash, K.: Novel applications of photonic band gap materials: Low-loss bends and high Q cavities. J. Appl. Phys. 75, 4753–4755 (1994)ADSCrossRefGoogle Scholar
  17. Mekis, A., Chen, J.C., Kurland, I., Fan, S.H., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)ADSCrossRefGoogle Scholar
  18. Nikolaev, I.S., Lodahl, P., Vos, W.L.: Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals. Phys. Rev. A 71, 053823 (2005)Google Scholar
  19. Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)ADSCrossRefMATHGoogle Scholar
  20. Palacios-Lidón, E., Galisteo-López, J., Juárez, B., López, C.: Engineered planar defects embedded in opals. Adv. Mater. 16, 341–345 (2004)CrossRefGoogle Scholar
  21. Pozas, R., Mihi, A., Ocaña, M., Míguez, H.: Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating. Adv. Mater. 18, 1183–1187 (2006)CrossRefGoogle Scholar
  22. Pruzinsky, S.A., Braun, P.V.: Fabrication and characterization of two-photon polymerized features in colloidal crystals. Adv. Funct. Mater. 15, 1995–2004 (2005)CrossRefGoogle Scholar
  23. Reculusa, S., Ravaine, S.: Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique. Chem. mater. 23, 598–605 (2003)CrossRefGoogle Scholar
  24. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 69, 62–69 (1968)Google Scholar
  25. Tétreault, N., Mihi, A., Míguez, H., Rodríguez, I., Ozin, G.A., Meseguer, F., Kitaev, V.: Dielectric planar defects in colloidal photonic crystal films. Adv. Mater. 16, 346–349 (2004)CrossRefGoogle Scholar
  26. Tétreault, N., Arsenault, A.C., Mihi, A., Wong, S., Kitaev, V., Manners, I., Miguez, H., Ozin, G.: Building tunable planar defects into photonic crystals using polyelectrolyte multilayers. Adv. Mater. 17, 1912–1916 (2005)CrossRefGoogle Scholar
  27. Vallée, R.A.L., Baert, K., Kolaric, B.Van, der Auweraer, M., Clays, K.: Nonexponential decay of spontaneous emission from an ensemble of molecules in photonic crystals. Phys. Rev. B 76, 045113 (2007)ADSCrossRefGoogle Scholar
  28. Vekris, E., Kitaev, V., Freymann, G.V., Perovic, D.D., Aitchison, J.S., Ozin, G.A.: Buried linear extrinsic defects in colloidal photonic crystals. Adv. Mater. 17, 1269–1272 (2005)CrossRefGoogle Scholar
  29. Vion, C., Barthou, C., Benalloul, P., Schwob, C., Coolen, L., Gruzintev, A., Emel’chenko, G., Masalov, V., Frigerio, J.-M., Maître, A.: Manipulating emission of CdTeSe nanocrystals embedded in 3D photonic crystals. J. Appl. Phys. 105, 113120 (2009)ADSCrossRefGoogle Scholar
  30. Wostyn, K., Zhao, Y., Schaetzen, G.D.: Insertion of a two dimensional cavity into a self-assembled colloidal crystal. Langmuir 19, 4465–4468 (2003)CrossRefGoogle Scholar
  31. Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  32. Yablonovitch, E., Gmitter, T., Meade, R., Rappe, A., Brommer, K., Joannoupoulos, J.: Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991)ADSCrossRefGoogle Scholar
  33. Yan, Q., Zhou, Z., Zhao, X., Chua, S.: Line defects embedded in three-dimensional photonic crystals. Adv. Mater. 17, 1917–1920 (2005)CrossRefGoogle Scholar
  34. Yang, Z.W., Huang, X.G., Sun, L., Zhou, J., Yang, G., Li, B., Yu, C.L.: Energy transfer enhancement in \(\text{ Eu }^{3+}\) doped \(\text{ TbPO }_{4}\) inverse opal photonic crystals. J. Appl. Phys. 105, 083523 (2009)ADSCrossRefGoogle Scholar
  35. Zhao, Y., Wostyn, K., de Schaetzen, G., Clays, K., Hellemans, L., Persoons, A., Szekeres, M., Schoonheydt, R.A.: The fabrication of photonic band gap materials with a two-dimensional defect. Appl. Phys. Lett. 82, 3764–3766 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. N. Hong
    • 1
    • 2
  • P. Bénalloul
    • 1
  • Z. Guennouni-Assimi
    • 1
  • R. Farha
    • 3
  • C. Bourdillon
    • 1
  • M.-C. Fauré
    • 1
  • M. Goldmann
    • 1
  • W. Marcillac
    • 1
  • L. Coolen
    • 1
  • A. Maître
    • 1
  • C. Schwob
    • 1
  1. 1.Institut des NanoSciences de ParisUPMCParisFrance
  2. 2.Institute of Materials ScienceVASTCau GiayVietnam
  3. 3.INSP and Laboratoire Nano@ECEECE, Paris école d’ingénieursParisFrance

Personalised recommendations