Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 3, pp 587–593 | Cite as

Effect of dielectric interface on the tight focusing properties of radially polarized annular multi Gaussian beams

  • M. Lavanya
  • K. Prabakaran
  • K. B. Rajesh
  • M. Udhayakumar
Article
  • 196 Downloads

Abstract

A super-length optical needle (44\(\lambda )\) of strong transversally polarized field with homogeneous intensity along the optical axis and sub-diffraction beam size (0.48\(\lambda )\) can be generated by focusing a radially polarized beam through a dielectric interface with an annular high numerical aperture (NA) lens. Moreover, the focal shifts induced by the mismatch of the refractive indices across the interface has been found. The dependence of focal shifts and spot size of the focused field on the probe depth and NA of the objective is also analyzed in detail by numerical calculations using vector diffraction theory. Such kind of non-diffracting optical needle may have applications in atom-optical experiments, such as with atom trap and atom switches.

Keywords

Tightly focusing Annular multi Gaussian beam Dielectric interface  Focal shifts 

References

  1. Biss, D.P., Brown, T.G.: Cylindrical vector beam focusing through a dielectric interface. Opt. Express 9, 490–497 (2001)CrossRefADSGoogle Scholar
  2. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  3. Charles, J.W., Prabakaran, K., Rajesh, K.B., Pandya, H.M.: Generation of sub wavelength super long dark channel using azimuthally polarized annular multi-Gaussian beam. Opt. Quantum Electron. (2013) doi: 10.1007/s11082-013-9827-5
  4. Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)CrossRefADSGoogle Scholar
  5. Gu, M.: Advanced Optical Imaging Theory. Springer, Berlin (2000)CrossRefGoogle Scholar
  6. Helseth, L.E.: Roles of polarization, phase and amplitude in solid immersion lens systems. Opt. Commun. 191, 161–167 (2001)CrossRefADSGoogle Scholar
  7. Huang, K., Shi, P., Kang, X., Zhang, X., Li, Y.: Design of DOE for generating a needle of a strong longitudinally polarized field. Opt. Lett. 35, 965–967 (2010)CrossRefADSGoogle Scholar
  8. Jian-Nong, C., Qin-Feng, X., Gang, W.: Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam. Chin. Phys. B 20, 114211–114215 (2011)CrossRefADSGoogle Scholar
  9. Kuang, C., Hao, X., Liu, X., Wang, T., Ku, Y.: Formation of sub-half-wavelength focal spot with ultra long depth of focus. Opt. Commun. 284, 1766–1769 (2011)CrossRefADSGoogle Scholar
  10. Lin, H., Jia, B.H., Gu, M.: Generation of an axially super resolved quasi-spherical focal spot using an amplitude modulated radially polarized beam. Opt. Lett. 36, 2471–2473 (2011)CrossRefADSGoogle Scholar
  11. Petrov, N.I.: Reflection and transmission of strongly focused vector beams at a dielectric interface. Opt. Lett. 29, 421–423 (2004)CrossRefADSGoogle Scholar
  12. Petrov, N.I.: Reflection and transmission of strongly focused light beams at a dielectric interface. J. Mod. Opt. 45, 1545–1556 (2005)CrossRefADSGoogle Scholar
  13. Prabakaran, K., Rajesh, K.B., Pillai, T.V.S., Jaroszewicz, Z.: Focus shaping of tightly focused TEM11mode Gaussian beam by diffractive optical element. Optik 124, 5039–5041 (2013)Google Scholar
  14. Rajesh, K.B., Jjaroszewicz, Z., Anbarasan, P.M.: Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance. Opt. Express 18, 26799–26805 (2010)CrossRefADSGoogle Scholar
  15. Tian, B., Pu, J.X.: Tight focusing of a double-ring-shaped azimuthally polarized beam. Opt. Lett. 36, 2014–2016 (2011)CrossRefADSGoogle Scholar
  16. Török, P., Varga, P., Laczik, Z., Booker, G.R.: Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J. Opt. Soc. Am. A 12, 325–332 (1995a)CrossRefADSGoogle Scholar
  17. Török, P., Varga, P., Booker, G.R.: Electromagnetic diffraction of light focused through a plana interface between materials of mismatched refractive indices. structure of the electromagnetic field. I. J. Opt. Soc. Am. A 12, 2136–2144 (1995b)CrossRefADSGoogle Scholar
  18. Török, P., Varga, P., Konkol, A., Booker, G.R.: Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II. J. Opt. Soc. Am. A 12, 2232–2238 (1995c)Google Scholar
  19. Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C., Chong, C.T.: Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–515 (2008)CrossRefGoogle Scholar
  20. Wiersma, S.H., Török, P., Visser, T.D., Varga, P.: Comparison of different theories for focusing through a plane interface. J. Opt. Soc. Am. A 14, 1482–1490 (1997)CrossRefADSGoogle Scholar
  21. Youngworth, K.S., Brown, T.G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)CrossRefADSGoogle Scholar
  22. Yuan, G.H., Wei, S.B., Yuan, X.C.: Nondiffracting transversally polarized beam. Opt. Lett. 36, 3479–3481 (2011)CrossRefADSGoogle Scholar
  23. Zhan, Q., Leger, J.R.: Focus shaping using cylindrical vector beams. Opt. Express 10, 324–331 (2002)CrossRefADSGoogle Scholar
  24. Zhang, Z.M., Pu, J.X., Wang, X.Q.: Focusing of partially coherent Bessel–Gaussian beams through a high-numerical aperture objective. Opt. Lett. 33, 49–51 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Lavanya
    • 1
  • K. Prabakaran
    • 2
  • K. B. Rajesh
    • 3
  • M. Udhayakumar
    • 3
  1. 1.Department of PhysicsPSGR Krishnammal College for WomenCoimbatoreIndia
  2. 2.Department of Physics, PG Extension CentrePeriyar UniversityDharmapuriIndia
  3. 3.Department of PhysicsChikkanna Government Arts CollegeTiruppurIndia

Personalised recommendations