Advertisement

Optical and Quantum Electronics

, Volume 46, Issue 10, pp 1397–1403 | Cite as

Design of a lattice-matched III–V–N/Si photovoltaic tandem cell monolithically integrated on silicon substrate

  • Alain Rolland
  • Laurent Pedesseau
  • Jacky Even
  • Samy Almosni
  • Cedric Robert
  • Charles Cornet
  • Jean Marc Jancu
  • Jamal Benhlal
  • Olivier Durand
  • Alain Le Corre
  • Pierre Rale
  • Laurent Lombez
  • Jean-Francois Guillemoles
  • Eric Tea
  • Sana Laribi
Article

Abstract

In this paper, we present a comprehensive study of high efficiencies tandem solar cells monolithically grown on a silicon substrate using GaAsPN absorber layer. InGaAs(N) quantum dots and GaAsPN quantum wells have been grown recently on GaP/Si susbstrate for applications related to light emission. For photovoltaic applications, we consider the GaAsPN diluted nitride alloy as the top junction material due to both its perfect lattice matching with Si and ideal bandgap energy for current generation in association with the Si bottom cell. Numerical simulation of the top cell is performed. The effect of layer thicknesses and doping on the cell efficiency are evidenced. In these structures a tunnel junction (TJ) is needed to interconnect both the top and bottom sub-cells. We compare the simulated performances of different TJ structures and show that the GaP(n+)/Si(p+) TJ is promising to improve performances of the current–voltage characteristic.

Keywords

Tandem solar cells Tunnel junctions Numerical simulation Photonics on silicon 

Notes

Acknowledgments

The work was supported by the MENHIRS ANR project (2011-PRGE-007-01). The authors would like to thank Pr. R. Lefort for fruitful discussions on the GaAsPN ellipsometric model.

References

  1. Adachi, S.: Optical properties of \(\text{ In }_{1-x}\text{ Ga }_{x}\text{ As }_{y}\text{ P }_{1-y}\) alloys. Phys. Rev. B 39, 12612 (1989)CrossRefADSGoogle Scholar
  2. Aho, A., Tukiainen, A., Polojärvi, V., Korpijärvi, V., Gubanov, A., Salmi, J., Guina, M. and Laukkanen, P.: Lattice matched dilute nitride materials for III–V high-efficiency multi-junction solar cells: growth parameter optimization in molecular beam epitaxy. In: 26th European Photovoltaic Solar Energy Conferences and Exhibition, pp. 58–61 (2010)Google Scholar
  3. Allen, C.R.: Gallium Phosphide as the High Bandgap Material in High-Efficiency Multi-Junction Solar Photovoltaics. Ph.D. Thesis, Purdue University, West Lafayette, IN (2010)Google Scholar
  4. Almosni, S., Robert, C., Nguyen, Thanh T., Cornet, C., Létoublon, A., Quinci, T., Levallois, C., Perrin, M., Kuyyalil, J., Pedesseau, L., Balocchi, A., Barate, P., Even, J., Jancu, J.M., Bertru, N., Marie, X., Durand, O., Le Corre, A.: Evaluation of InGaPN and GaAsPN materials lattice-matched to Si for multi-junction solar cells. J. Appl. Phys. 113, 123509 (2013)CrossRefADSGoogle Scholar
  5. Baudrit, M., Algora, C.: Modeling of GaInP/GaAs dual-junction solar cells including tunnel junction. In: 33rd IEEE Photovoltaic Specialist Conference (PVSC), pp. 1–5 (2008)Google Scholar
  6. Baudrit, M., Algora, C.: Tunnel diode modeling, including nonlocal trap-assisted tunneling: a focus on III–V multijunction solar cell simulation. IEEE Trans. Electron Devices 57, 2564 (2010)CrossRefADSGoogle Scholar
  7. Fahy, S., Lindsay, A., O’Reilly, E.P.: Intrinsic limits on electron mobility in disordered dilute nitride semiconductor alloys. IEE Proc. Optoelectron. 151(5), 352–356 (2004)CrossRefGoogle Scholar
  8. Forouhi, A.R., Bloomer, I.: Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 34, 7018 (1986)CrossRefADSGoogle Scholar
  9. Friedman, D.J.: Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr. Opin. Solid State Mater. Sci. 14, 131 (2010)CrossRefADSGoogle Scholar
  10. Geisz, J.F., Friedman, D.J.: III–N–V semiconductors for solar photovoltaic applications. Semicond. Sci. Technol. 17, 769–777 (2002)CrossRefADSGoogle Scholar
  11. Geisz, J.F., Friedman, D.J., Ward, J.S., Duda, A., Olavarria, W.J., Moriarty, T.E., Kiehl, J.T., Romero, M.J., Norman, A.G., Jones, K.M.: 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93, 123505 (2008)CrossRefADSGoogle Scholar
  12. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 39). Prog. Photovolt: Res. Appl. 20, 12 (2010)CrossRefGoogle Scholar
  13. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 42). Prog. Photovolt: Res. Appl. 21, 827 (2013)CrossRefGoogle Scholar
  14. Harris, C., Lindsay, A., O’Reilly, E.P.: Evolution of N defect states and optical transitions in ordered and disordered \(\text{ GaP }_{1-x}\text{ N }_{x}\) alloys. J. Phys.: Condens. Matter 20, 295211 (2008)Google Scholar
  15. Jandieri, K., Kunert, B., Liebich, S., Zimprich, M., Volz, K., Stolz, W., Gebhard, F., Baranovskii, S.D., Koukourakis, N., Gerhardt, N.C., Hoffmann, M.R.: Nonexponential photoluminescence transients in a Ga(NAsP) lattice matched to a (001) silicon substrate. Phys. Rev. B 87, 035303 (2013)CrossRefADSGoogle Scholar
  16. Kashner, A., Luttgert, T., Born, H., Hoffmann, A., Egorov, A.Y., Riechert, H.: Recombination mechanisms in GaInNAs/GaAs multiple quantum wells. Appl. Phys. Lett. 78, 1391 (2001)CrossRefADSGoogle Scholar
  17. Lavery, J.: Quantum Tunneling Model of a p–n Junction in Silvaco. M.S. Thesis, Naval Postgraduate School, Monterey, CA (2008)Google Scholar
  18. Ming-Han, H., Yuh-Renn, W.: Numerical modeling of \(\text{ In }_{{\rm x}}\text{ Ga }_{1-{\rm x}}\)N silicon multi-junction tandem solar cell. In: 38th IEEE Photovoltaic Specialist Conference (PVSC), pp. 002052–002055 (2012)Google Scholar
  19. Nguyen, Thanh T., Robert, C., Guo, W., Létoublon, A., Cornet, C., Elias, G., Ponchet, A., Rohel, T., Bertru, N., Balocchi, A., Durand, O., Micha, J.S., Perrin, M., Loualiche, S., Marie, X., Le Corre, A.: Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon. J. Appl. Phys. 112, 053521 (2012)CrossRefADSGoogle Scholar
  20. Robert, C., Bondi, A., Even, J., Cornet, C., Durand, O., Burin, J.P., Jancu, J.M., Guo, W., Letoublon, A., Folliot, H., Boyer-Richard, S., Perrin, M., Chevalier, N., Dehaese, O., Tavernier, K., Loualiche, S., Le Corre, A.: Room temperature operation of GaAsP(N)/GaP(N) quantum well based light-emitting diodes: effect of the incorporation of nitrogen. Appl. Phys. Lett. 98, 251110 (2011)CrossRefADSGoogle Scholar
  21. Robert, C., Perrin, M., Cornet, C., Even, J., Jancu, J.M.: Atomistic calculations of Ga(NAsP)/GaP(N) quantum wells on silicon substrate: band structure and optical gain. Appl. Phys. Lett. 100, 111901 (2012)CrossRefADSGoogle Scholar
  22. Silvaco: ATLAS User’s Manual. http://silvaco.com (2013)

Copyright information

© European Union 2014

Authors and Affiliations

  • Alain Rolland
    • 1
  • Laurent Pedesseau
    • 1
  • Jacky Even
    • 1
  • Samy Almosni
    • 1
  • Cedric Robert
    • 1
  • Charles Cornet
    • 1
  • Jean Marc Jancu
    • 1
  • Jamal Benhlal
    • 1
  • Olivier Durand
    • 1
  • Alain Le Corre
    • 1
  • Pierre Rale
    • 2
  • Laurent Lombez
    • 2
  • Jean-Francois Guillemoles
    • 2
  • Eric Tea
    • 2
  • Sana Laribi
    • 2
  1. 1.INSA Rennes, CNRS, UMR 6082 FOTON-OHMUniversité Européenne de BretagneRennesFrance
  2. 2.UMR 7174—CNRS-EDF-ENSCP, EDF R&DInstitut de Recherche et Développement sur l’Energie Photovoltaïque (IRDEP)Chatou CedexFrance

Personalised recommendations