Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 2, pp 179–184 | Cite as

Focusing properties of a 4Pi configuration system under the illumination of double ring shaped \(\hbox {LG}_{11}\) beam

  • P. Suresh
  • R. Thilagavathi
  • K. Gokulakrishnan
  • K. B. Rajesh
  • T. V. S. Pillai
Article

Abstract

Based on the vectorial Debye theory, the tight focusing properties of a 4Pi configuration system under the illumination of double ring shaped \(\hbox {LG}_{11}\) beam through a high numerical aperture objective are investigated numerically. The result shows that a spherical focal is generated by tightly focused azimuthally polarized \(\hbox {LG}_{11}\) beams in a 4Pi focusing system configuration. The numerical simulation result shows that it is possible to trap particle or to scan a specimen without moving the source (lenses or laser beams), we also generated multiple focal spot by changing the beam parameter (\(\beta \)) which is suitable for many optical applications.

Keywords

Numerical aperture Spherical spot Focal shifting  Optical trapping 

References

  1. Ashkin, A., Dziedzic, J.Z.: Optical trapping and manipulation of viruses and bacteria. Science 235, 1517 (1987)ADSCrossRefGoogle Scholar
  2. Bokor, N., Davidson, N.: toward a spherical spot distribution with 4\(\pi \)focusing of radially polarized light. Opt. Lett. 29, 1968 (2004)ADSCrossRefGoogle Scholar
  3. Chen, J., Ng, J., Liu, S., Lin, Z.: Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation. Phys. Rev. E 80, 026607 (2009)ADSCrossRefGoogle Scholar
  4. Dehez, H., Pich’e, M., Koninck, Y.D.: Enhanced resolution in two-photon imaging using a TM01 laser beam at a dielectric interface. Opt. Lett. 34, 3601 (2009)CrossRefGoogle Scholar
  5. Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)ADSCrossRefGoogle Scholar
  6. Fortin, P.L., Pich’e, M., Varin, C.: Direct-field electron acceleration with ultrafast radially polarized laser beams: scaling laws and optimization. J. Phys. B At. Opt. Phys. 43, 025401 (2010)ADSCrossRefGoogle Scholar
  7. Grosjean, T., Courjon, D.: Smallest focal spots. Opt. Commun. 272, 314 (2007)ADSCrossRefGoogle Scholar
  8. Hayazawa, N., Saito, Y., Kawata, S.: Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 6239 (2004)ADSCrossRefGoogle Scholar
  9. Hell, S., Stelzer, E.H.K.: Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992)Google Scholar
  10. Hell, S.W., Lindek, S., Stelzer, E.H.K.: Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy. J. Mod. Opt. 41, 675–681 (1994)Google Scholar
  11. Kawauchi, H., Yonezawa, K., Kozawa, Y., Sato, S.: Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Opt. Lett. 32, 1839–1841 (2007)Google Scholar
  12. Kozawa, Y., Sato, S.: Focusing property of a double-ring-shaped radially polarized beam. Opt. Lett. 31, 820–822 (2006)Google Scholar
  13. Li, Z., Yan, S., Yao, B., Lei, M., Ma, B., Gao, P., Dan, D., Rupp, R.: Theoretical prediction of three-dimensional shifting of a spherical focal spot in a 4Pi focusing system. J. Opt. 14, 055706–055712 (2012)Google Scholar
  14. Michihata, M., Hayashi, T., Takaya, Y.: Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam. Appl. Opt. 48, 6143–6151 (2009)Google Scholar
  15. Nesterov, A.V., Niziev, V.G.: Laser beams with axially symmetric polarization. J. Phys. D Appl. Phys. 33, 1817–1822 (2000)Google Scholar
  16. Nieminen, T.A., Heckenberg, N.R., Dunlop, H.R.: Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt. Lett. 33, 122–124 (2008)Google Scholar
  17. Niziev, V.G., Nesterov, A.V.: Influence of beam polarization on laser cutting efficiency. J. Phys. D Appl. Phys. 32, 1455–1461 (1999)Google Scholar
  18. Salamin, Y.I.: Electron acceleration from rest in vacuum by an axicon Gaussian laser beam. Phys. Rev. A 73, 043402 (2006)ADSCrossRefGoogle Scholar
  19. Terakado, G., Watanabe, K., Kano, H.: Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system. Appl. Opt. 48, 1114–1118 (2009)Google Scholar
  20. Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)Google Scholar
  21. Yan, S.H., Yao, B.L.: Radiation forces of a highly focused radially polarized beam on spherical particles. Phys. Rev. A 76, 053836 (2007)ADSCrossRefGoogle Scholar
  22. Yan, S., Yao, B., Rupp, R.: Shifting the spherical focus of a 4Pi focusing system. Opt. Express 19, 673–678 (2011)Google Scholar
  23. Yoon, Y.J., Kim, W.C., Park, N.C., Park, K.S., Park, Y.P.: Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics. Opt. Lett. 34, 1961–1963 (2009)Google Scholar
  24. Youngworth, K.S., Brown, T.G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)Google Scholar
  25. Zhan, Q.: Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377–3382 (2004)Google Scholar
  26. Zhan, Q.: Properties of circularly polarized vortex beams. Opt. Lett. 31, 867–869 (2006)Google Scholar
  27. Zhang, Z., Pu, J., Wang, X.: Focusing of partially coherent Bessel–Gaussian beams through a high-numerical-aperture objective. Opt. Lett. 33, 49–51 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. Suresh
    • 1
  • R. Thilagavathi
    • 2
  • K. Gokulakrishnan
    • 3
  • K. B. Rajesh
    • 4
  • T. V. S. Pillai
    • 5
  1. 1.Department of ECENational College of EngineeringTirunelveliIndia
  2. 2.Department of ECESri RangaPoopathi College of EngineeringVillupuramIndia
  3. 3.Department of ECE, Regional CentreAnna University, Tirunelveli RegionTirunelveliIndia
  4. 4.Department of PhysicsChikkanna Government Arts CollegeTirupurIndia
  5. 5.Department of PhysicsUniversity College of EngineeringNagercoilIndia

Personalised recommendations