Skip to main content
Log in

Bound to continuum absorption coefficient for spherical and conical quantum dots

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the effects of the incident light polarization on the bound to continuum absorption coefficient of both spherical and conical quantum dots have been investigated. The study is based on the effective mass theory and the non equilibrium Green’s function formalism. For the bound to continuum component of the absorption coefficient, both of in-plane and perpendicular polarization effects have been studied for different sizes of conical and spherical quantum dots. Generally, the behavior of conical and spherical quantum dots are similar in case of perpendicular polarization, but their behaviors are different in the case of in-plane polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyama, T., Sugawara, M., Arakawa, Y.: Quantum-dot semiconductor optical amplifiers. Proc. IEEE. 95(9), 1757–1766 (2007)

    Google Scholar 

  • Ameen, T.A., El-Batawy, Y.M.: Polarization dependence of absorption by bound electrons in self-assembled quantum dots. J. Appl. Phys. 113(19), 193102 (2013)

    Google Scholar 

  • Ameen, T.A., El-Batawy, Y.M., Abouelsaood, A.A.: Modeling light absorption by bound electrons in self-assembled quantum dots. J. Appl. Phys. 113(8), 083101 (2013)

    Article  ADS  Google Scholar 

  • Banin, U., Lee, C.J., Guzelian, A.A., Kadavanich, A.V., Alivisatos, A.P., Jaskolski, W., Bryant, G.W., Efros, A.L., Rosen, M.: Size-dependent electronic level structure of inas nanocrystal quantum dots: test of multiband effective mass theory. J. Chem. Phys. 109(6), 2306–2309 (1998)

    Article  ADS  Google Scholar 

  • Bimberg, D., Kirstaedter, N., Ledentsov, N., Alferov, Z.I., Kop’ev, P., Ustinov, V.: Ingaas-gaas quantum-dot lasers. Sel. Top. Quantum Electron. IEEE J. 3(2), 196–205 (1997)

    Article  Google Scholar 

  • Celibert, V., Tranvouez, E., Guillot, G., Bru-Chevallier, C., Grenouillet, L., Duvaut, P., Gilet, P., Ballet, P., Million, A.: Mbe growth optimization and optical spectroscopy of inas/gaas quantum dots emitting at 1.3 \(\mu \)m in single and stacked layers. J. Cryst. Growth 275(12), e2313–e2319 (2005) Proceedings of the 14th International Conference on Crystal Growth and the 12th International Conference on Vapor Growth and Epitaxy.

  • Chuang, S.: Physics of Optoelectronic Devices. Wiley Series in Pure and Applied Optics, pp. 352–357. Wiley, New York (1995)

  • Chuang, S.L.: Physics of Photonic Devices, pp. 347–353. Wiley, New York (2009)

  • Datta, S.: Electronic Transport in Mesoscopic Systems, pp. 293–314. Cambridge University Press, Cambridge, MA (1997)

  • Datta, S.: Quantum Transport: Atom to Transistor, pp. 285–301. Cambridge University Press, Cambridge, MA (2005)

  • Guzelian, A.A., Banin, U., Kadavanich, A.V., Peng, X., Alivisatos, A.P.: Colloidal chemical synthesis and characterization of inas nanocrystal quantum dots. Appl. Phys. Lett. 69(10), 1432–1434 (1996)

    Article  ADS  Google Scholar 

  • Hassanabadi, H., Rahimov, H., Lu, L., Wang, C.: Nonlinear optical properties of a three-electron quantum dot with account of the rashba spinorbit interaction. J. Lumin. 132(5), 1095–1100 (2012)

    Article  Google Scholar 

  • Kim, H.S., Suh, J.H., Park, C.G., Lee, S.J., Noh, S.K., Song, J.D., Park, Y.J., Choi, W.J., Lee, J.I.: Structure and thermal stability of inas/gaas quantum dots grown by atomic layer epitaxy and molecular beam epitaxy. J. Cryst. Growth. 285(12), 137–145 (2005)

    Google Scholar 

  • Kochman, B., Stiff-Roberts, A., Chakrabarti, S., Phillips, J., Krishna, S., Singh, J., Bhattacharya, P.: Absorption, carrier lifetime, and gain in inas-gaas quantum-dot infrared photodetectors. Quantum Electron. IEEE J. 39, 459–467 (2003)

    Article  ADS  Google Scholar 

  • Lantz, K., Stiff-Roberts, A.: Calculation of intraband absorption coefficients in organic/inorganic nanocomposites: effects of colloidal quantum dot surface ligand and dot size. Quantum Electron. IEEE J. 47, 1420–1427 (2011)

    Article  ADS  Google Scholar 

  • Ledentsov, N.: Quantum dot laser. Semicond. Sci. Technol. 26(1), 014001 (2011)

    Article  ADS  Google Scholar 

  • Lee, H., Park, H., Kim, T.: Formation mode of self-assembled cdte quantum dots directly grown on gaas substrates. J. Cryst. Growth 291(2), 442–447 (2006)

    Article  ADS  Google Scholar 

  • Lin, Y.-Y., Singh, J.: Theory of polarization dependent intersubband transitions in p-type sige/si self-assembled quantum dots. J. Appl. Phys. 96(2), 1059–1063 (2004)

    Article  ADS  Google Scholar 

  • Liu, H.C., Gao, M., McCaffrey, J., Wasilewski, Z.R., Fafard, S.: Quantum dot infrared photodetectors. Appl. Phys. Lett. 78(1), 79–81 (2001)

    Article  ADS  Google Scholar 

  • Liu, G., Guo, K., Hassanabadi, H., Lu, L., Yazarloo, B.: A theoretical study of nonlinear optical absorption and refractive index changes with the three-dimensional ring-shaped pseudoharmonic potential. Phys. B Condens. Matter 415, 92–96 (2013)

    Article  ADS  Google Scholar 

  • López, A.L.L.A.B.C., Vega, A.M.: Next Generation of Photovoltaics, pp. 191–204. Springer, Berlin (2012)

  • Lu, L., Xie, W., Hassanabadi, H.: Linear and nonlinear optical absorption coefficients and refractive index changes in a two-electron quantum dot. J. Appl. Phys. 109(6), 77–92 (2011)

    Google Scholar 

  • Luque, A., Martí, A., Stanley, C.: Understanding intermediate-band solar cells. Nat. Photonics 6(3), 146–152 (2012)

    Article  ADS  Google Scholar 

  • Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Cuadra, L., Luque, A.: Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films. 511–512, 638–644 (2006)

    Google Scholar 

  • Razeghi, M., Razeghi, M.: Quantum Dot Infrared Photodetectors, pp. 395–423. Springer, New York (2010)

  • Razeghi, M.: Technology of Quantum Devices, pp. 396–422. Springer, Berlin (2010)

  • Ryzhii, V., Khmyrova, I., Ryzhii, M., Mitin, V.: Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors. Semicond. Sci. Technol. 19(1), 8–16 (2004)

    Article  ADS  Google Scholar 

  • Sugawara, M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B. 69, 259–275 (2004)

    Google Scholar 

  • Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for iii-v compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  • Wei, G., Forrest, S.R.: Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Lett. 7(1), 218–222 (2007)

    Article  ADS  Google Scholar 

  • Williamson, A.J., Zunger, A.: Inas quantum dots: Predicted electronic structure of free-standing versus gaas-embedded structures. Phys. Rev. B 59, 15819–15824 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Ahmed A. Abouelsaood for his great help and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek A. Ameen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameen, T.A., El-Batawy, Y.M. Bound to continuum absorption coefficient for spherical and conical quantum dots. Opt Quant Electron 47, 149–157 (2015). https://doi.org/10.1007/s11082-014-9894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9894-2

Keywords

Navigation