Optical and Quantum Electronics

, Volume 47, Issue 2, pp 139–147 | Cite as

On the amplification of unchirped soliton pulses in a dispersion-decreasing fiber

  • Hui Zhong
  • Bo Tian
  • Yan Jiang
  • Hao Sun
  • Hui-Ling Zhen
  • Wen-Rong Sun


In this paper, based on a variable-coefficient nonlinear Schrödinger (vcNLS) equation, amplification of the fundamental and second-order unchirped solitons in the dispersion-decreasing fiber without any external amplification device, which is different from those in the existing literatures, is studied. Via symbolic computation, soliton solutions of the vcNLS equation are obtained. For a fundamental-soliton pulse, the amplitude is amplified by the gain during the propagation, whereas the width keeps unchanged. Because of the equilibrium between the gain, nonlinearity and varying dispersion, soliton structure is not destroyed, and the amplified fundamental soliton is free from the pedestal and chirp. With the increase of the absolute value of the gain coefficient \(\alpha \), magnification of the fundamental-soliton amplitude is enhanced in the same propagation distance. For the second-order soliton, the width is compressed and the amplitude is amplified, because the amplification process is accompanied by the compression of the soliton. Period of the second-order soliton decreases exponentially during the propagation, and decreases with the increase of the absolute value of \(\alpha \) in the same propagation distance.


Variable-coefficient nonlinear Schrödinger equation  Soliton amplification Dispersion-decreasing fibers Symbolic computation 



We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008, and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.


  1. Agrawal, G.P.: Effect of two-photon absorption on the amplification of ultrashort optical pulses. Phys. Rev. E 48, 2316–2318 (1993)ADSCrossRefGoogle Scholar
  2. Agrawal, G.P.: Optical Fiber Communications III. Academic, New York (1997)Google Scholar
  3. Agrawal, G.P.: Nonlinear Fibre Optics, 3rd edn. Academic, San Diego (2003)Google Scholar
  4. Agrawal, G.P.: Applications of Nonlinear Fiber Optics, 2nd edn. Academic, New York (2008)Google Scholar
  5. Aguergaray, C., Andersen, T.V., Schimpf, D.N., Schmidt, O., Rothhardt, J., Schreiber, T., Limpert, J.: Parametric amplification and compression to ultrashort pulse duration of resonant linear waves. Opt. Exp. 15, 5699–5710 (2007)ADSCrossRefGoogle Scholar
  6. Audebert, P., Lecherbourg, L., Bastiani-Ceccotti, S., Geindre, J.P., Blancard, C., Cossé, P., Faussurier, G., Shepherd, R., Renaudin, P.: Atomic processes in plasmas created by an ultra-short laser pulse. J. Phys. Conf. Ser. 112, 042001-1–042001-4 (2008)Google Scholar
  7. Cao, W.H., Wai, P.K.A.: Higher-order soliton compression with pedestal suppression in nonlinear optical loop mirrors constructed from dispersion decreasing fibers. Opt. Commun. 221, 181–190 (2003)ADSCrossRefGoogle Scholar
  8. Desurvire, E.: Erbium-Doped Fiber Amplifiers: Principles and Applications. Wiley, New York (1994)Google Scholar
  9. Dubietis, A., Tamo\(\breve{s}\)auskas, G., Polesana, P., Valiulis, G., Valtna, H., Faccio, D., Di Trapani, P., Piskarskas, A.: Highly efficient four-wave parametric amplification in transparent bulk Kerr medium. Opt. Exp. 15, 11126–11132 (2007)Google Scholar
  10. Gagnon, L., Bélanger, P.A.: Adiabatic amplification of optical solitons. Phys. Rev. A 43, 6187–6193 (1991)ADSCrossRefGoogle Scholar
  11. Gasch, A., Berning, T., Jäger, D.: Generation and parametric amplification of solitons in a nonlinear resonator with a Korteweg-de Vries medium. Phys. Rev. A 34, 4528–4531 (1986)ADSCrossRefGoogle Scholar
  12. Hilaire, S., Pagnoux, D., Roy, P., Février, S.: Numerical study of single mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances. Opt. Exp. 14, 10865–10877 (2006)ADSCrossRefGoogle Scholar
  13. Hirota, R.: Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)ADSCrossRefMATHGoogle Scholar
  14. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave. J. Math. Phys. 14, 805–809 (1973)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. Kanna, T., Lakshmanan, M., Tchofo Dinda, P., Akhmediev, N.: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E 73, 026604-1–026604-15 (2006)Google Scholar
  16. Korneev, N., Vysloukh, V.A., Rodriguez, E.M.: Propagation dynamics of weakly localized cnoidal waves in dispersion-managed fiber: from stability to chaos. Opt. Exp. 11, 3574–3582 (2003)ADSCrossRefGoogle Scholar
  17. Kubota, Y., Odagaki, T.: Numerical study of soliton scattering in inhomogeneous optical fibers. Phys. Rev. E 68, 026603-1–026603-9 (2003)Google Scholar
  18. Larionova, Y., Weiss, C.O., Egorov, O.: Dark solitons in semiconductor resonators. Opt. Exp. 13, 8308–8317 (2005)ADSCrossRefGoogle Scholar
  19. Li, B.: Exact soliton solutions to an averaged dispersion-managed fiber system equation. Z. Naturforsch. A 59, 919–926 (2004)Google Scholar
  20. Liao, Z.M., Agrawal, G.P.: Role of distributed amplification in designing high-capacity soliton systems. Opt. Exp. 9, 66–71 (2001)ADSCrossRefGoogle Scholar
  21. Lin, G.R., Liao, Y.S., Xia, G.Q.: Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers. Opt. Exp. 12, 2017–2026 (2004)ADSCrossRefGoogle Scholar
  22. Lin, Y.T., Lin, G.R.: Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation. Opt. Lett. 31, 1382–1384 (2006)ADSCrossRefGoogle Scholar
  23. Lin, G.R., Lin, Y.T., Lee, C.K.: Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier. Opt. Exp. 15, 2993–2999 (2007)ADSCrossRefGoogle Scholar
  24. McKinstrie, C.J., Moore, R.O., Radic, S., Jiang, R.: Phase-sensitive amplification of chirped optical pulses in fibers. Opt. Exp. 15, 3737–3758 (2007)ADSCrossRefGoogle Scholar
  25. Nakkeeran, K., Kwan, Y.H.C., Wai, P.K.A.: Method to find the stationary solution parameters of chirped fiber grating compensated dispersion-managed fiber systems. Opt. Commun. 215, 315–321 (2003)ADSCrossRefGoogle Scholar
  26. Ngabireng, C.M., Dinda, P.T.: Radiating and nonradiating dispersion-managed solitons. Opt. Lett. 30, 595–597 (2005)ADSCrossRefGoogle Scholar
  27. Ozeki, Y., Takasaka, S., Inoue, T., Igarashi, K., Hiroishi, J., Sugizaki, R., Sakano, M., Namiki, S.: Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile. IEEE Photonic. Tech. Lett. 17, 1698–1700 (2005)ADSCrossRefGoogle Scholar
  28. Ozeki, Y., Inoue, T.: Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression. Opt. Lett. 31, 1606–1608 (2006)ADSCrossRefGoogle Scholar
  29. Röser, F., Eidam, T., Rothhardt, J., Schmidt, O., Schimpf, D.N., Limpert, J., Tünnermann, A.: Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Opt. Lett. 32, 3495–3497 (2007)ADSCrossRefGoogle Scholar
  30. Samek, O., Kurowski, A., Kittel, S., Kukhlevsky, S., Hergenröder, R.: Ultra-short laser pulse ablation using shear-force feedback: femtosecond laser induced breakdown spectroscopy feasibility study. Spectrochim. Acta B 60, 1225–1229 (2005)ADSCrossRefGoogle Scholar
  31. Senthilnathan, K., Nakkeeran, K., Li, Q., Wai, P.K.A.: Pedestal free pulse compression of chirped optical solitons. Opt. Commun. 285, 1449–1455 (2012)ADSCrossRefGoogle Scholar
  32. Shen, Y.J., Gao, Y.T., Yu, X., Meng, G.Q., Qin, Y.: Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation. Appl. Math. Comput. 277, 502–508 (2014)Google Scholar
  33. Sun, Z.Y., Gao, Y.T., Yu, X., Liu,Y.: Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics. Europhys. Lett. 93, 40004-1–40004-6 (2011)Google Scholar
  34. Sun, Z.Y., Gao, Y.T., Yu, X., Liu,Y.: Dynamics of bound vector solitons induced by stochastic perturbations: soliton breakup and soliton switching. Phys. Lett. A 377, 3283–3290 (2013)Google Scholar
  35. Sysliatin, A.A., Nolan, D.A.: Optical signal processing in dispersion varying fiber. J. Nonlinear Opt. Phys. 16, 171–184 (2007)CrossRefGoogle Scholar
  36. Takara, H., Kawanishi, S., Saruwatari, M.: Optical signal eye diagram measurement with subpicosecond resolution using optical sampling. Electron. Lett. 32, 1399–1400 (1996)CrossRefGoogle Scholar
  37. Tamura, K.R., Yoshida, E., Nakazawa, M.: Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source. Electron. Lett. 32, 1691–1693 (1996)CrossRefGoogle Scholar
  38. Wada, N., Sotobayashi, H., Kitayama, K.: 2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fiber Bragg grating with supercontinuum light source. Electron. Lett. 36, 816–817 (2000)CrossRefGoogle Scholar
  39. Wai, P.K.A., Cao, W.H.: Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber. J. Opt. Soc. Am. B 20, 1346–1355 (2003)ADSCrossRefGoogle Scholar
  40. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S., Nakkeeran, K.: Exact soliton solutions for the core of dispersion-managed solitons. Phys. Rev. E 68, 046605-1–046605-8 (2003)Google Scholar
  41. Yaita, M., Nagatsuma, T.: The effect of sampling-pulse pedestals on temporal resolution in electro-optic sampling. IEICE Trans. Electron. E81–C, 254–259 (1998)Google Scholar
  42. Yamamoto, T., Yoshida, E., Tamura, K.R., Yonenaga, K., Nakazawa, M.: 640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and “reverse dispersion fiber”. IEEE Photon. Technol. Lett. 12, 353–355 (2000)ADSCrossRefGoogle Scholar
  43. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dynamics, 75, 701–708 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hui Zhong
    • 1
  • Bo Tian
    • 1
  • Yan Jiang
    • 1
  • Hao Sun
    • 1
  • Hui-Ling Zhen
    • 1
  • Wen-Rong Sun
    • 1
  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations