Optical and Quantum Electronics

, Volume 47, Issue 7, pp 2249–2275 | Cite as

Photonic crystal logic gates: an overview

  • Aryan Salmanpour
  • Shahram Mohammadnejad
  • Ali Bahrami


Photonic crystals are considered as the suitable structures for creating all-optical processors because of low loss and high capability in guiding and controlling the light. This paper contains a comprehensive review of the principles, different types of designing methods and operational improvements of optical logic gates. The presented designs are investigated and categorized into three groups of all-optical photonic crystal logic gates based on interference waveguides, resonator structures and self-collimation phenomenon. Two former structures can be designed by utilizing linear or nonlinear materials while the later one performs just in linear regime and is independent from the input beam intensity. In general, the main purpose of previously accomplished studies has been presenting the designs to be resulted in broad operational bandwidth, low power consumption, high switching speed, high contrast ratio and excellent integration capability by trading off between different parameters. Also a comprehensive study has been done on the advantages and disadvantages of different design methods.


Optical logic gate Photonic crystal Ring resonator Self-collimation Waveguide 


  1. Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal controllable logic gate based on nonlinear ring resonator. In: 5th IEEE International Conference on Group IV Photonics, pp. 170–172 (2008a)Google Scholar
  2. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10–16 (2008b)ADSCrossRefGoogle Scholar
  3. Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators. J. Opt. A Pure Appl. Opt. 11, 085203–085210 (2009)Google Scholar
  4. Ayre, M., Karle, T.J., Davies, T., Krauss, T.F.: Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend. IEEE J. Sel. Areas Commun. 23, 1390–1395 (2005)CrossRefGoogle Scholar
  5. Bai, J., et al.: Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator. Appl. Opt. 48, 6923–6927 (2009)ADSCrossRefGoogle Scholar
  6. Bykov, V.P.: Spontaneous emission in a periodic structure. J. Exp. Theor. Phys. 35, 505–513 (1972)Google Scholar
  7. Bykov, V.P.: Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861–871 (1975)ADSCrossRefGoogle Scholar
  8. Chen, C.-C., Chien, H.-D., Luan, P.-G.: Photonic crystal beam splitters. Appl. Opt. 43, 6187–6190 (2004)ADSCrossRefGoogle Scholar
  9. Cuesta-Soto, F., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12, 161–167 (2004)ADSCrossRefGoogle Scholar
  10. Cuesta-Soto, F., García-Baños, B., Martí, J.: Compensating intermodal dispersion in photonic crystal directional couplers. Opt. Lett. 30, 3156–3158 (2005)ADSCrossRefGoogle Scholar
  11. Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt. Quantum Electron. 44, 27–34 (2011)CrossRefGoogle Scholar
  12. Dzedolik, I., Lapayeva, S., Rubass, a: All-optical logic gates based on nonlinear dielectric films. Ukr. J. Phys. Opt. 9, 187–196 (2008)CrossRefGoogle Scholar
  13. Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009a)ADSCrossRefGoogle Scholar
  14. Fasihi, K., Mohammadnejad, S.: Orthogonal hybrid waveguides: an approach to low crosstalk and wideband photonic crystal intersections design. J. Light. Technol. 27, 799–805 (2009b)ADSCrossRefGoogle Scholar
  15. Frandsen, L.H., et al.: Ultralow-loss 3-dB photonic crystal waveguide splitter. Opt. Lett. 29, 1623–1625 (2004)ADSCrossRefGoogle Scholar
  16. Goh, J., Fushman, I., Englund, D., Vukovic, J.: Genetic optimization of photonic bandgap structures. Opt. Express 15, 8218–8230 (2007)ADSCrossRefGoogle Scholar
  17. Gnauck, A.H., et al.: \(25 \times 40\)-Gb/s copolarized DPSK transmission over \(12 \times 100\)-km NZDF with 50-GHz channel spacing. IEEE Photonics Technol. Lett. 15, 467–469 (2003a)Google Scholar
  18. Gnauck, A.H., Chandrasekhar, S., Leuthold, J., Stulz, L.: Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity. IEEE Photonics Technol. Lett. 15, 99–101 (2003b)Google Scholar
  19. Hernández, S., et al.: Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. J. Appl. Phys. 103, 064309–064315 (2008)ADSCrossRefMATHGoogle Scholar
  20. Hou, J., Gao, D., Wu, H., Zhou, Z.: Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals. Opt. Commun. 282, 3172–3176 (2009)ADSCrossRefGoogle Scholar
  21. Isfahani, B.M., Ahamdi Tameh, T., Granpayeh, N., Maleki Javan, A.R.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. J. Opt. Soc. Am. B 26, 1097–1102 (2009)ADSCrossRefGoogle Scholar
  22. Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of optical XOR, XNOR, NAND, and OR logic gates based on multi-mode interference waveguides for binary-phase-shift-keyed signal. J. Light. Technol. 29, 2836–2846 (2011a)ADSCrossRefGoogle Scholar
  23. Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 284, 3528–3533 (2011b)ADSCrossRefGoogle Scholar
  24. Jiang, J., Qiang, Z., Xu, X., Chen, X.: Analysis of photonic logic gates based on single hexagonal-lattice photonic crystal ring resonator. J. Nanophotonics 5, 053519–053527 (2011)ADSCrossRefGoogle Scholar
  25. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)Google Scholar
  26. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  27. Kabilan, A.P., Christina, X.S., Caroline, P.E.: Realization of optical logic gates using photonic crystal. In: International Conference on Optic Photonics, pp. 3–6 (2009)Google Scholar
  28. Kabilan, A.P., Christina, X.S., Caroline, P.E.: Photonic crystal based all optical OR and XOR logic gates. In: Second International Conference on Computing, Communication and Networking Technologies, pp. 0–3 (2010)Google Scholar
  29. Kawashita, Y., Haraguchi, M., Okamoto, H., Fujii, M., Fukui, M.: Optical amplifier using nonlinear nanodefect cavity in photonic crystal. Jpn. J. Appl. Phys. 45, 7724–7728 (2006)ADSCrossRefGoogle Scholar
  30. Kim, J.H., et al.: All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technol. Lett. 14, 1436–1438 (2002)ADSCrossRefGoogle Scholar
  31. Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)ADSCrossRefGoogle Scholar
  32. Kosaka, H., et al.: Superprism phenomena in photonic crystals. Phys. Rev. B 58, R10096–R10099 (1998)MathSciNetADSCrossRefGoogle Scholar
  33. Kosaka, H., et al.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74, 1212–1214 (1999)ADSCrossRefGoogle Scholar
  34. Kumar, V.D., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. Fundam. Appl. 2, 199–206 (2004)ADSCrossRefGoogle Scholar
  35. Lee, K.-Y., et al.: The designs of XOR logic gates based on photonic crystals. In: Asia Pacific Optical Communications. International Society for Optics and Photonics, pp. 71353Y-1–71353Y-8 (2008)Google Scholar
  36. Lin, P., Hsu, F.: All optical NOR gates implemented by 2-D photonic crystals. In: 14th International Symposium on Electrets (ISE), pp. 193–194 (2011)Google Scholar
  37. Li, X., Xu, Y.: Optical sensing by using photonic crystal based Mach–Zehnder interferometer. Opt. Commun. 301–302, 7–11 (2013)CrossRefGoogle Scholar
  38. Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–19000 (2008)ADSCrossRefGoogle Scholar
  39. Liu, W., Yang, D., Shen, G., Tian, H., Ji, Y.: Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Technol. 50, 55–64 (2013)ADSCrossRefGoogle Scholar
  40. Malureanu, R., Frandsen, L.H.: A statistical approach for measuring dislocations in 2D photonic crystals. In: International Conference on Nanoscience and Nanotechnology, pp. 200–202 (2008)Google Scholar
  41. Meindl, J.D.: Low power microelectronics: retrospect and prospect. Proc. IEEE 83, 619–635 (1995)CrossRefGoogle Scholar
  42. Mitsugi, S., et al.: Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs. In: 16th Annual Meeting IEEE Lasers Electro-Optics Soc (LEOS), vol. 1, pp. 214–215 (2003)Google Scholar
  43. Nguyen, H.C., Hashimoto, S., Shinkawa, M., Baba, T.: Compact and fast photonic crystal silicon optical modulators. Opt. Express 20, 22465–22474 (2012)ADSCrossRefGoogle Scholar
  44. Notomi, M., et al.: Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005)ADSCrossRefGoogle Scholar
  45. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E., Ryu, H.-Y.: Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004)ADSCrossRefGoogle Scholar
  46. Passaro, V.M.N.: Modeling of Photonic Devices, vol. 414. Nova Science Publishers Inc, New York (2009)Google Scholar
  47. Rosa, L., Saitoh, K., Kakihara, K., Koshiba, M.: Genetic-algorithm assisted design of C-band CROW-miniaturized PCW interleaver. J. Light. Technol. 27, 2678–2687 (2009)ADSCrossRefGoogle Scholar
  48. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)ADSCrossRefGoogle Scholar
  49. Sakoda, K.: Optical properties of photonic crystals. Ser. Opt. Sci. 80, 99–123 (2005)Google Scholar
  50. Shinya, A., et al.: Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs. In: Optoelectronics Integrated Devices VII (International Society for Optics and Photonics) (2005). doi: 10.1117/12.592631
  51. Shinya, A., et al.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006)ADSCrossRefGoogle Scholar
  52. Sibilia, C., Benzson, T., Marciniak, M., Szoplic, T.: Photonic Crystals: Physics and Technology, vol. 289. Springer, Italia (2008)CrossRefGoogle Scholar
  53. Sukhoivanov, I., Guryev, I.: Photonic Crystal: Physics and Practical Modelling, vol. 242. Springer, Berlin (2009)CrossRefGoogle Scholar
  54. Vcsels, P.C., et al.: Beam properties of visible proton-implanted photonic crystal VCESLs. IEEE Sel. Topics Quantum Electron. 17, 1648–1655 (2011)CrossRefMATHGoogle Scholar
  55. Vujic, D., John, S.: Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching. Phys. Rev. A 72, 013807–013817 (2005)ADSCrossRefGoogle Scholar
  56. Wang, J., Sun, J., Sun, Q.: Experimental observation of a 1.5 \(\upmu \text{ m }\) band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation. Opt. Lett. 31, 1711–1713 (2006)ADSCrossRefGoogle Scholar
  57. Wang, J., Sun, J., Sun, Q.: Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photonics Technol. Lett. 19, 541–543 (2007a)ADSCrossRefGoogle Scholar
  58. Wang, J., Sun, J., Sun, Q.: Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Opt. Express 15, 1690–1699 (2007b)ADSCrossRefGoogle Scholar
  59. Wang, J., Sun, J., Zhang, X., Huang, D., Fejer, M.: PPLN-based all-optical three-input 20/40 Gb/s AND gate for NRZ/RZ Signals and XOR gate for NRZ-DPSK/RZ-DPSK signals. In: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. OMV3 (2008a)Google Scholar
  60. Wang, J., et al.: PPLN-based flexible optical logic and gate. IEEE Photonics Technol. Lett. 20, 211–213 (2008b)ADSCrossRefGoogle Scholar
  61. Wilson, R., Karle, T.J., Moerman, I., Krauss, T.F.: Efficient photonic crystal Y-junctions. J. Opt. A Pure Appl. Opt. 5, S76–S80 (2003)ADSCrossRefGoogle Scholar
  62. Witzens, J., Lon, M., Scherer, A.: Self-collimation in planar photonic crystals. IEEE Sel. Topics Quantum Electron. 8, 1246–1257 (2002)CrossRefGoogle Scholar
  63. Wu, C.J., Liu, C.P., Ouyang, Z.: Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl. Opt. 51, 680–685 (2012)ADSCrossRefGoogle Scholar
  64. Xavier, S., Arunachalam, K.: Compact design of all-optical logic gates based on self-collimation phenomenon in two-dimensional photonic crystal. Opt. Eng. 51, 045201–045206 (2012)ADSCrossRefGoogle Scholar
  65. Xavier, S., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 025201–025207 (2013)ADSCrossRefGoogle Scholar
  66. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  67. Yablonovitch, E.: Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283–295 (1993)ADSCrossRefGoogle Scholar
  68. Yan, M., et al.: Adaptive blind equalization for coherent optical BPSK system. In: 36th European Conference and Exhibition on Optical Communication. IEEE (2010). doi: 10.1109/ECOC.2010.5621449
  69. Yu, X., Fan, S.: Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 83, 3251–3253 (2003)ADSCrossRefGoogle Scholar
  70. Zhang, X., Wang, Y., Sun, J., Liu, D., Huang, D.: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12, 361–366 (2004)ADSCrossRefGoogle Scholar
  71. Zhang, Y., Zhang, Y., Li, B.: Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15, 9287–9292 (2007)ADSCrossRefGoogle Scholar
  72. Zhu, Z., Ye, W., Ji, J., Yuan, X., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Express 14, 1783–1788 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aryan Salmanpour
    • 1
  • Shahram Mohammadnejad
    • 1
  • Ali Bahrami
    • 2
  1. 1.Nanoptronics Research Center, Electrical and Electronics Engineering DepartmentIran University of Science and TechnologyTehranIran
  2. 2.Department of Electrical EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations