Optical and Quantum Electronics

, Volume 47, Issue 7, pp 2087–2094 | Cite as

Possibility of high power UV light generation in periodically poled MgO doped lithium niobate waveguides

  • G. Li
  • J. Wang
  • Y. Cui


This study investigates limitations of high power single-pass 399 nm light generations in periodically poled 5 mol% MgO doped lithium niobate (PPMgLN) waveguides arising from optical absorptions and the resulting thermal loading. A coupled thermo-optical model was employed to simulate 399 nm light generation process. It was found that after optimizing the waveguide length and the operating temperature, the output power of 0.393 W with almost no thermal inhibition can be achieved, which corresponds to a conversion efficiency of 78.6 %. It is expected that a compact and efficient high power 399 nm lasers can be realized by second harmonic generation in PPMgLN waveguides.


Second harmonic generation Thermal inhibition UV laser 



This research work was financially supported by National Natural Scientific Foundation of China (11204205), the start-up Foundation of Taiyuan University of Technology and Natural Scientific Foundation of Taiyuan University of Technology (2013Z029). We wish to thank D. Wang for critical reading of the manuscript.


  1. Aadhi, A., Chaitanya, N.A., Singh, R.P., Samanta, G.K.: High-power, continuous-wave, solid-state, single frequency, tunable source for the ultraviolet. Opt. Lett. 39(12), 3410–3413 (2014)ADSCrossRefGoogle Scholar
  2. Asobe, M., Tadanaga, O., Yanagawa, T., Itoh, H., Suzuki, H.: Reducing photorefractive effect in periodically poled ZnO- and MgO-doped \({\rm LiNbO}_{3}\) wavelength converters. Appl. Phys. Lett. 78(21), 3163–3165 (2001)ADSCrossRefGoogle Scholar
  3. Eckardt, R.C., Reintjes, J.: Phase matching limitations of high efficiency second harmonic generation. IEEE J. Quantum Electron. QE–20(10), 1178–1187 (1984)ADSCrossRefGoogle Scholar
  4. Eimerl, D.: Thermal aspects of high-average-power electrooptic switches. IEEE J. Quantum Electron. QE–23(12), 2238–2251 (1987)ADSCrossRefGoogle Scholar
  5. Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L.: Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28(11), 2631–2654 (1992)ADSCrossRefGoogle Scholar
  6. Furukawa, K., Kitamura, K., Alexandrovski, A., Route, R.K., Fejer, M.M., Foulon, G.: Green-induced infrared absorption in MgO doped \({\rm LiNbO}_{3}\). Appl. Phys. Lett. 78(14), 1970–1972 (2001)ADSCrossRefGoogle Scholar
  7. Gayer, O., Sacks, Z., Galun, E., Arie, A.: Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric \({\rm LiNbO}_{3}\). Appl. Phys. B 91(2), 343–348 (2008)ADSCrossRefGoogle Scholar
  8. Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with \(10^{-18}\) instability. Science 341(6151), 1215–1218 (2013)ADSCrossRefGoogle Scholar
  9. Honda, K., Takahashi, Y., Kuwamoto, T., Fujimoto, M., Toyoda, K., Ishikawa, K., Yabuzaki, T.: Magneto-optical trapping of Yb atoms and a limit on the branching ratio of the \(^{1}{\rm P}_{1}\) state. Phys. Rev. A 59(2), R934(4) (1999)ADSCrossRefGoogle Scholar
  10. Hoyt, C.W., Barber, Z.W., Oates, C.W., Fortier, T.M., Diddams, S.A., Hollberg, L.: Observation and absolute frequency measurements of the \(^{1}{\rm S}_{0}-^{3}{\rm P}_{0}\) optical clock transition in neutral ytterbium. Phys. Rev. Lett. 95(8), 083003 (2005)Google Scholar
  11. Hu, P.F., Chong, T.C., Shi, L.P., Hou, W.X.: Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in \({\rm LiTaO}_{3}\) substrates. Opt. Quantum Electron. 31, 337–349 (1999)CrossRefGoogle Scholar
  12. Jechow, A., Schedel, M., Stry, S., Sacher, J., Menzel, R.: Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm. Opt. Lett. 32(20), 3035–3037 (2007)ADSCrossRefGoogle Scholar
  13. Jiang, H., Li, G., Xu, X.: Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO\(_{3}\) waveguide pumped by a fiber laser at 1111.6 nm. Opt. Express 17(18), 16073–16080 (2009)ADSCrossRefGoogle Scholar
  14. Kumar, S.C., Devi, K., Ebrahim-Zadeh, M.: Stable, continuous-wave, ytterbium-fiber-based single-pass ultraviolet source using \({\rm BiB}_{3}{\rm O}_{6}\). Opt. Lett. 38(23), 5114–5117 (2013)ADSCrossRefGoogle Scholar
  15. Li, G., Cui, Y., Wang, J.: Photorefractive inhibition of second harmonic generation in periodically poled MgO doped \({\rm LiNbO}_{3}\) waveguide. Opt. Express 21(19), 21790–21799 (2013)ADSCrossRefGoogle Scholar
  16. Liao, Z.M., Payne, S.A., Dawson, J., Drobshoff, A., Ebbers, C., Pennington, D.: Thermally induced dephasing in periodically poled KTP frequency-doubling crystals. J. Opt. Soc. Am. B 21(12), 2191–2196 (2004)ADSCrossRefGoogle Scholar
  17. Lo, H., Alonso, J., Kienzler, D., Keitch, B.C., Clercq, L.E., Negnevitsky, V., Home, J.P.: All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions. Appl. Phys. B 114(1–2), 17–25 (2014)ADSCrossRefGoogle Scholar
  18. Louchev, O.A., Yu, N.E., Kurimura, S., Kitamura, K.: Thermal inhibition of high-power second-harmonic generation in periodically poled \({\rm LiNbO}_{3}\) and \({\rm LiTaO}_{3}\) crystals. Appl. Phys. Lett. 87(13), 131101 (2005)ADSCrossRefGoogle Scholar
  19. Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K.: Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO\(_{3}\). Opt. Lett. 28(11), 935–937 (2003)Google Scholar
  20. Mizuuchi, K., Sugita, T., Yamamoto, K., Kawaguchi, T., Yoshino, T., Imaeda, M.: Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO\(_{3}\). Opt. Lett. 28(15), 1344–1346 (2003)ADSCrossRefGoogle Scholar
  21. Parameswaran, K.R., Kurz, J.R., Roussev, R.V., Fejer, M.M.: Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. Opt. Lett. 27(1), 43–45 (2002)ADSCrossRefGoogle Scholar
  22. Ricciardi, I., Rosa, M.D., Rocco, A., Ferraro, P., Vannucci, A., Spano, P., Natale, P.D.: Sum-frequency generation of cw ultraviolet radiation in periodically poled \({\rm LiTaO}_{3}\). Opt. Lett. 34(9), 1348–1350 (2009)ADSCrossRefGoogle Scholar
  23. Richter, A., Pavel, N., Heumann, E., Huber, G., Parisi, D., Toncelli, A., Tonelli, M., Diening, A., Seelert, W.: Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting praseodymium lasers. Opt. Express 14(8), 3282–3287 (2006)ADSCrossRefGoogle Scholar
  24. Sahm, A., Uebernickel, M., Paschke, K., Erbert, G., Tränkle, G.: Thermal optimization of second harmonic generation at high pump powers. Opt. Express 19(23), 23029–23035 (2011)ADSCrossRefGoogle Scholar
  25. Sakai, K., Koyata, Y., Hirano, Y.: Blue light generation in a ridge waveguide MgO:LiNbO\(_{3}\) crystal pumped by a fiber Bragg grating stabilized laser diode. Opt. Lett. 32(16), 2342–2344 (2007)ADSCrossRefGoogle Scholar
  26. Sasamoto, S., Hirohashi, J., Ashihara, S.: Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control. J. Appl. Phys. 105(8), 083102 (2009)ADSCrossRefGoogle Scholar
  27. Schwesyg, J.R., Kajiyama, M.C.C., Falk, M., Jundt, D.H., Buse, K., Fejer, M.M.: Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range. Appl. Phys. B 100(1), 109–115 (2010)ADSCrossRefGoogle Scholar
  28. Sun, J., Xu, C.: 466 mW green light generation using annealed proton-exchanged periodically poled MgO:LiNbO\(_{3}\) ridge waveguides. Opt. Lett. 37(11), 2028–2030 (2012)MathSciNetADSCrossRefMATHGoogle Scholar
  29. Vainio, M., Peltola, J., Persijn, S., Harren, F.J.M., Halonen, L.: Thermal effects in singly resonant continuous-wave optical parametric oscillators. Appl. Phys. B 94(3), 411–427 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations