Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 7, pp 1983–1989 | Cite as

Reflective fiber refractometer based on fiber Bragg grating inscribed in thin-core-fiber

  • F. Yuan
  • G. F. Yan
  • Y. B. Zhang
Article

Abstract

A novel reflective refractometer based on a fiber Bragg grating (FBG) inscribed in a thin-core-fiber (TCF) stub was demonstrated. The cladding modes are excited by the core diameter mismatch between the single-mode-fiber (SMF) and TCF. The core mode and specific cladding modes in the TCF are reflected by the FBG and partly recoupled into the back-propagating core mode in the SMF. Experimental results demonstrate that the power of the cladding mode reflection changes with the surrounding refractive index (SRI). The temperature-immune SRI measurement with linear sensitivity of 54.55 dB per refractive index unit has been achieved by the cost-effective power detection within the refractive index range from 1.33 to 1.42. To eliminate the measurement deviation caused by the fluctuation of light source, the simple self-referencing detecting has been carried out by measuring the ratio of the cladding mode reflection and the core mode reflection.

Keywords

Optical fiber refractometer Fiber Bragg grating Thin-core-fiber  Power-referenced 

Notes

Acknowledgments

This work was supported by the Program of Zhejiang Leading Team of Science and Technology Innovation (No. 2010R50007), the National Natural Science Foundation of China (No. 61307053) and the China Postdoctoral Science Foundation (No. 2013M531866).

References

  1. Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser Photon. Rev. 7, 83–108 (2013)CrossRefGoogle Scholar
  2. Bhatia, V., Vengsarkar, A.M.: Optical fiber long-period grating sensors. Opt. Lett. 21, 692–694 (1996)ADSCrossRefGoogle Scholar
  3. Ding, J.F., Zhang, A.P., Shao, L.Y., Yan, J.H., He, S.: Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett. 17, 1247–1249 (2005)ADSCrossRefGoogle Scholar
  4. Guo, T., Tam, H.Y., Krug, P.A., Albert, J.: Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling. Opt. Express 17, 5736–5742 (2009)ADSCrossRefGoogle Scholar
  5. Gu, B., Qi, W.L., Zheng, J., Zhou, Y.Y., Shum, P.P., Luan, F.: Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber. Opt. Lett. 39, 22–25 (2014)ADSCrossRefGoogle Scholar
  6. Han, M., Guo, F.W., Lu, Y.F.: Optical fiber refractometer based on cladding-mode Bragg grating. Opt. Lett. 35, 399–401 (2010)ADSCrossRefGoogle Scholar
  7. He, Z.H., Zhu, Y.N., Du, H.: Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution. Appl. Phys. Lett. 92, 044105-1–044105-3 (2008)ADSGoogle Scholar
  8. Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1263–1276 (1997)ADSCrossRefGoogle Scholar
  9. Liang, W., Huang, Y.Y., Xu, Y., Lee, R.K., Yariv, A.: Highly sensitive fiber Bragg grating refractive index sensors. App. Phys. Lett. 86, 151122 (2005)ADSCrossRefGoogle Scholar
  10. Ma, Y., Qiao, X.G., Guo, T., Wang, R.H., Zhang, J., Weng, Y.Y., Rong, Q.Z., Hu, M.L., Feng, Z.Y.: Reflective fiber-optic refractometer based on a thin-core fiber tailored Bragg grating reflection. Opt. Lett. 37, 323–325 (2012)ADSCrossRefGoogle Scholar
  11. Ran, Z.L., Rao, Y.J., Liu, W.J., Chiang, K.S.: Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 16, 2252–2263 (2008)ADSCrossRefGoogle Scholar
  12. Rong, Q.Z., Qiao, X.G., Du, Y.Y., Feng, D.Y., Wang, R.H., Ma, Y., Sun, H., Hu, M.L., Feng, Z.Y.: Reflective refractometer based on a thin-core fiber tailored multimode fiber bragg grating. Sens. J. 13, 4356–4360 (2013)CrossRefGoogle Scholar
  13. Schroeder, K., Ecke, W., Mueller, R., Willsch, R., Andreev, A.: A fibre Bragg grating refractometer. Meas. Sci. Technol. 12, 757–764 (2001)ADSCrossRefGoogle Scholar
  14. Silva, S., Santos, J.L., Malcata, F.X., Kobelke, J., Schuster, K., Frazão, O.: Optical refractometer based on large-core air-clad photonic crystal fibers. Opt. Lett. 15, 852–854 (2011)ADSCrossRefGoogle Scholar
  15. Tian, Z., Yam, S.S.-H., Loock, H.P.: Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 33, 1105–1107 (2008)ADSCrossRefGoogle Scholar
  16. Weast, R.C.: CRC Handbook of Chemistry and Physics, 61st edn. Boca Raton, CRC (1981)Google Scholar
  17. Wu, Q., Semeova, Y., Yan, B.B., Ma, Y.Q., Wang, P.F., Yu, C.X., Farrell, G.: Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure. Opt. Lett. 36, 2197–2199 (2011)ADSCrossRefGoogle Scholar
  18. Wu, Q., Semenova, Y., Wang, P.F., Farrell, G.: High sensitivity SMS fiber structure based refractometer-analysis and experiment. Opt. Express 19, 7937–7944 (2011)ADSCrossRefGoogle Scholar
  19. Xia, T.H., Zhang, A.P., Gu, B., Zhu, J.J.: Fiber-optic refractive-index sensors based on transmissive and refractive thin-core fiber modal interferometers. Opt. Commun. 283, 2136–2139 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical InstrumentationsZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory for Sensing TechnologiesHangzhouChina

Personalised recommendations