Advertisement

Optical and Quantum Electronics

, Volume 47, Issue 6, pp 1339–1346 | Cite as

Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems

  • B. Ni
  • X. Y. Chen
  • D. Y. Xiong
  • H. Liu
  • G. H. Hua
  • J. H. Chang
  • J. H. Zhang
  • H. Zhou
Article

Abstract

We propose an infrared plasmonic refractive index-sensitive nanosensor based on the electromagnetically induced transparency (EIT) of waveguide resonator systems. The structure consists of one tooth-shaped cavity as well as the bus and stub metal–insulator–metal waveguides. By adjusting the structural geometry, it is demonstrated that the controllable transmission of EIT response can be obtained with the coupled-mode theory and the finite-difference-time-domain simulations. It is found that the transmission spectra dip at the spectra can be strongly controlled by changing the refractive index filled in the stub waveguide. The calculated results show that the sensitivity, full width at half-maximum and figure of merit of plasmonic nanosensor are 733 nm/RIU, 24.11 nm and 695, respectively. With the compact structure, the nanosensor may have great potential to be used in the field of integrated optoelectronics.

Keywords

Plasmonic nanosensor Electromagnetically induced transparency  Coupled-mode theory 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China Grants (61306138, 11374161), Natural Science Foundation of Jiangsu Province, China Grants (BK2012460, BK20131001), The Priority Academic Program Development of Jiangsu Higher Education Institutions. The Startup Foundation for Introducing Talent of NUIST (S8113075001).

References

  1. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefADSGoogle Scholar
  2. Becker, J., Trügler, A., Jakab, A., Hohenester, U., Sönnichsen, C.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161 (2010)CrossRefGoogle Scholar
  3. Dmitriev, A., Pakizeh, T., Kall, M., Sutherland, D.S.: Gold–silica–gold nanosandwiches: tunable bimodal plasmonic resonators. Small 3, 294 (2007)CrossRefGoogle Scholar
  4. EastFDTD v3.0, DONGJUN Science and Technology Co., ChinaGoogle Scholar
  5. Esteban, R., Vogelgesang, R., Dorfmüller, J., Dmitriev, A., Rockstuhl, C., Etrich, C., Kern, K.: Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8(10), 3155–3159 (2008)CrossRefADSGoogle Scholar
  6. El-Zohary, S.E., Azzazi, A, Okamoto, H., Okamoto, T., Haraguchi, M., Swillam M.A.: Design optimization and fabrication of plasmonic nano sensor. In: Proc. SPIE 8994, Photonic and Phononic Properties of Engineered Nanostructures IV, 89940V (2014)Google Scholar
  7. Guo, N., Hu, W., Chen, X., Chen, X., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)CrossRefADSGoogle Scholar
  8. Han, Z.H., Forsberg, E., He, S.L.: Surface plasmon bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett. 19, 91–93 (2007)CrossRefADSGoogle Scholar
  9. Hao, E., Li, S., Bailey, R.C., Zou, S., Schatz, G.C., Hupp, J.T.: Optical properties of metal nanoshells. J. Phys. Chem. B 108, 1224 (2004)CrossRefGoogle Scholar
  10. Haus, H.A.: Waves and Fields in Optoelectronics, Chap. 7. Prentice-Hall, Englewood Cliffs (1987)Google Scholar
  11. Hendrickson, J., Guo, J.P., Zhang, B.Y., Buchwald, W., Soref, R.: Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 37(3), 371–373 (2012)CrossRefADSGoogle Scholar
  12. Hu, W., Wang, L., Chen, X., Guo, N., Miao, J., Yu, A., Lu, W.: Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Opt. Quantum Electron. 45, 713–720 (2013)CrossRefGoogle Scholar
  13. Kekatpure, R.D., Hryciw, A.C., Barnard, E.S., Brongersma, M.L.: Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 1, 24112–24129 (2009)CrossRefADSGoogle Scholar
  14. Lu, H., Liu, X.M., Mao, D., Wang, G.X.: Plasmonic nanosensor based on fano resonance in waveguide-coupled resonators. Opt. Lett. 37(18), 3780–3782 (2012)CrossRefADSGoogle Scholar
  15. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)CrossRefADSGoogle Scholar
  16. Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)CrossRefADSGoogle Scholar
  17. Liu, N., Weis, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10(4), 1103–1107 (2010)CrossRefADSGoogle Scholar
  18. Lin, X.S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008)CrossRefADSGoogle Scholar
  19. Mirnaziry, S.R., Setayesh, A., Abrishamian, M.S.: Design and analysis of plasmonic filters based on stubs. J. Opt. Soc. Am. B. 28(5), 1300–1307 (2011)CrossRefADSGoogle Scholar
  20. Nusz, G.J., Marinakos, S.M., Rangarajan, S., Chilkoti, A.: Dual-order snapshot spectral imaging of plasmonic nanopartic.es. Appl. Opt. 50(21), 4198–4206 (2011)CrossRefADSGoogle Scholar
  21. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRefADSGoogle Scholar
  22. Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: Hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)CrossRefADSGoogle Scholar
  23. Prodan, E., Nordlander, P.: Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444 (2004)CrossRefADSGoogle Scholar
  24. Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)CrossRefADSGoogle Scholar
  25. Wang, L., Hu, W., Wang, J., Wang, X., Wang, S., Chen, X., Lu, W.: Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency. Appl. Phys. Lett. 100, 123501 (2012)CrossRefADSGoogle Scholar
  26. Zhou, J.L., Da, M., Yang, J.H., Han, W.B., Xu, D.: Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems. Opt. Express 19, 4856–4861 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Meteorological Observation and Information ProcessingNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Laboratory of Advanced MaterialFudan UniversityShanghaiChina
  3. 3.Key Laboratory of Polar Materials and Devices, Ministry of EducationEast China Normal UniversityShanghaiChina

Personalised recommendations