Optical and Quantum Electronics

, Volume 47, Issue 7, pp 1751–1763 | Cite as

Optical and structural properties of TiO\(_{\mathbf{2}}\) nanocomposite doped by Si and Cu at high temperature

  • Nasrollah Najibi Ilkhechi
  • Fallah Dousi
  • Behzad Koozegar Kaleji
  • Esmaiel Salahi


The TiO\(_{2}\) nanocomposite doped by Si and Cu were prepared via sol–gel method under process control. The effects of doping and calcination temperature on the structural and photo-catalytic properties of applied nanocomposite have been studied by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope, FTIR and UV–vis absorption spectroscope. XRD results suggest that adding dopants has a great effect on the crystallinity and particle size of TiO\(_{2}\). Titania rutile phase formation was inhibited by Si\(^{4+}\) and promoted by Cu\(^{2+}\) addition doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methyl orange under visible radiation. The results show that the photocatalytic activity of the 20 % Si doped TiO\(_{2}\) nanocomposite have a larger degradation efficiency than 5 % Cu doped TiO\(_{2}\) under visible light.


TiO\(_{2}\) nano composite Sol–gel Photo-catalytic activity Si and Cu dopant 


  1. Awate, S.V., Jacob, N.E., Deshpande, S.S., Gaydhankar, T.R., Belhekar, A.A.: Synthesis, characterization and photo catalytic degradation of aqueous eosin over Cr containing Ti/MCM-41 and \(\text{ SiO }_2\text{-TiO }_2\) catalysts using visible light. J. Mol. Catal. A Chem. 226, 149–154 (2005)CrossRefGoogle Scholar
  2. Balachandran, K., Venckatesh, R., Sivraj, R.: Synthesis of nano \(\text{ TiO }_2\text{-SiO }_2\) composite using sol-gel method: effect on size, surface morphology and thermal stability. Int. J. Eng. Sci. Technol. 28, 3695–3700 (2010)Google Scholar
  3. Begin-Colin, S., Le, G., Mocellin, A., Jurenka, C., Zandona, M.: Investigation of grinding effects in binary mixtures from the TiO\(_2\)–SnO\(_2\)–V\(_2\)O\(_2\) system. J. Solid State Chem. 127, 98–108 (1996)Google Scholar
  4. Chary, K.V.R., Sagar, G.V., Naresh, D., Seela, K.K., Sridhar, B.: Characterization and reactivity of copper oxide catalysts supported on TiO\(_2\)–ZrO\(_2\). J. Phys. Chem. B 109, 9437–9444 (2005)Google Scholar
  5. Colon, G., Maicu, M., Hidalgo, M.C., Navio, J.A.: Cu-doped TiO\(_2\) systems with improved photocatalytic activity. Appl. Catal. B Environ. 67, 41–51 (2006)CrossRefGoogle Scholar
  6. Colon, G., Maicu, M., Hidalgo, M.C.: Navío, J.A.: Cu-doped TiO\(_2\) systems with improved photocatalytic activity. J Appl. Catal. B. 67, 41–45 (2006)Google Scholar
  7. Das, D., Mishra, H.K., Parida, K.M., Dalai, A.K.: Preparation physico-chemical characterization and catalytic activity of sulphated ZrO\(_2\)-TiO\(_2\) mixed oxides. J. Mol. Catal. A 189, 271–282 (2002)Google Scholar
  8. Deng, C., Hu, H., Ge, X., Han, C., Zhao, D., Shao, G.: One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason. Sonochem. 18, 932–937 (2011)CrossRefGoogle Scholar
  9. Feng, J., Wong, R., Hu, X., Yue, P.: Discoloration and mineralization of Orange II by using Fe\(^{3+}\)-doped TiO\(_2\) and bentonite clay-based Fe nanocatalysts. Catal. Today 98, 441–446 (2004)CrossRefGoogle Scholar
  10. Fu, X., Clark, L.A., Yang, Q., Anderson, M.A.: Enhanced photocatalytic performance of Titania-based binary metal oxides: TiO\(_2\)/SiO\(_2\) and TiO\(_2\)/ZrO\(_2\). Environ. Sci. Technol. 30, 647–653 (1996)ADSCrossRefGoogle Scholar
  11. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  12. Guan, K.: Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO\(_2\)/SiO\(_2\)films. Surf. Coat. Technol. 191, 155–160 (2005)CrossRefGoogle Scholar
  13. Hermann, J.M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)CrossRefGoogle Scholar
  14. Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.: Environmental applications of semiconductor. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  15. Hong, S.S., Lee, M., Park, S., Lee, G.: Synthesis of TiO\(_2\)/SiO\(_2\) nanoparticles in a water in carbon dioxide microemulsion and their photocatalytic activity. Res. Chem. Intermed. 31, 379–389 (2003)Google Scholar
  16. Hussain, S.T., Mazhar, M., Siddiqa, A., Javid, H., Siddiqa, M.: Cu-S coped TiO\(_2\) nanophotocatalyst for the degradation of environmental and industrial pollutants. Catal. J. 5, 21–30 (2012)Google Scholar
  17. Ilkhechi, N.N., Kaleji, B.K.: High temperature stability and photocatalytic activity of nanocrystalline anatase powders with Zr and Si co-dopants. J. Sol-Gel Sci. Technol. 69, 351–356 (2014)CrossRefGoogle Scholar
  18. Ismail, A.A.: Synthesis and characterization of Y\(_2\)O\(_3\)/Fe\(_2\)O\(_3\)/TiO\(_2\) nanoparticles by sol-gel method. Appl. Catal. B Environ. 58, 115–121 (2005)CrossRefGoogle Scholar
  19. Jin, Z., Zhang, X., Li, Y., Li, S., Lu, G.: 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO\(_2\) photocatalyst under visible light irradiation. Catal. Commun. 8, 1267–1273 (2007)CrossRefGoogle Scholar
  20. Jing, L, Li, S., Song, S., Xue, L., Fu, H.: Investigation on the electron transfer between anatase and rutile in nano-sized TiO\(_2\) by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 92, 1030–1036 (2008).Google Scholar
  21. Jung, K.Y., Park, S.B.: Photoactivity of SiO\(_2\)/TiO\(_2\) and ZrO\(_2\)/TiO\(_2\) mixed oxides prepared by sol-gel method. Mater. Lett. 58, 2897–2900 (2004)CrossRefGoogle Scholar
  22. Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T., Ohsaki, H.: Photocatalytic efficiency of TiO\(_2\)/SnO\(_2\) thin film stacks prepared by DC magnetron sputtering. Vacuum 74, 723–727 (2004)CrossRefGoogle Scholar
  23. Kapusuz, D., Park, J., Ozturk, A.: Sol–gel synthesis and photocatalytic activity of B and Zr co-doped TiO\(_2\). J. Phys. Chem. Solids 74, 1026–1031 (2013)Google Scholar
  24. Li, X.Z., Li, F.B.: Study of Au/Au\(^{3+}\)-TiO\(_2\) photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35, 2381–2387 (2001)ADSCrossRefGoogle Scholar
  25. Lia, X.Z., Li, F.B., Yang, C.L., Ge, W.K.: Photocatalytic activity of WO\(_{\rm{x}}\)-TiO\(_2\) under visible light irradiation. J. Photochem. Photobiol. A 141, 209–217 (2001)CrossRefGoogle Scholar
  26. Liu, Q., Wu, X., Wang, B., Liu, Q.: Preparation and super-hydrophilic properties of TiO\(_2\)/SnO\(_2\) composite thin films. Mater. Res. Bull. 37, 2255–2262 (2002)CrossRefGoogle Scholar
  27. Liu, Z., Pan, K., Zhang, Q., Liu, M., Jia, R., Lu, Q., Wang, D., Bai, Y., Li, T.: The performances of the mercurochrome-sensitized composite semiconductor photo electrochemical cells based on TiO\(_2\)/SnO\(_2\) and ZnO/SnO\(_2\) composites. Thin Solid Films 468, 291–297 (2004)ADSCrossRefGoogle Scholar
  28. Masakazu, A.: Second-generation titanium dioxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl. Chem. 72, 1787–1792 (2000)Google Scholar
  29. Ilkhechi, Najibi: N., Koozegar Kaleji, B., Fallah, D.J.: Optical and structural properties of tenorite nanopowders doped by Si and Zr. Opt. Quantum Electron (2014). doi: 10.1007/s11082-014-9940-0 Google Scholar
  30. Ohko, Y., Fujishima, A., Hashimoto, K.: Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO\(_2\) film photocatalyst. J. Phys. Chem. B 102, 1724–1729 (1998)CrossRefGoogle Scholar
  31. Queeney, K.T., Herbots, N., Shaw, J.M., Atluri, V., Chabal, Y.J.: Infrared spectroscopic analysis of an ordered Si/SiO\(_2\) interface. Appl. Phys. Lett. 84, 493–496 (2004)ADSCrossRefGoogle Scholar
  32. Rajeshwar, K., Tacconi, N.R., Chenthamarakshan, C.R.: Semiconductor-based composite materials: preparation, properties, and performance. Chem. Mater. 13, 2765–2782 (2001)CrossRefGoogle Scholar
  33. Reddy, K., Manorama, S., Redd, A.: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239–245 (2002)CrossRefGoogle Scholar
  34. Sahni, S., Reddy, B., Murty, B.: Influence of process parameters on the synthesis of nano-titania by sol-gel route. Mater. Sci. Eng. A 452–453, 758–762 (2007)CrossRefGoogle Scholar
  35. Salavati-Niasari, M., Davar, F., Mir, N.: Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27, 3514–3518 (2008)Google Scholar
  36. Sikong, L., Damchan, J., Kooptarnond, K., Niyomwas, S.: Effect of doped SiO\(_2\) and calcination temperature on phase transformation TiO\(_2\) photocatalyst prepared by sol gel method. J. Sci. Technol. 30, 385–391 (2008)Google Scholar
  37. Subramanian, V., Wolf, E., Kamat, P.V.: Semiconductor–metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO\(_2\) films? J. Phys. Chem. B 105, 11439–11446 (2001)Google Scholar
  38. Takeuchi, M., Yamashita, H., Matsuoka, M., Anpo, M., Hirao, T., Itoh, N.: Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted thin TiO\(_2\) thin film photocatalyst. Catal. Lett. 67, 135–137 (2000)Google Scholar
  39. Vishwanathan, V., Roh, H.S., Kim, J.K., Jun, K.W.: Surface properties and catalytic activity of TiO\(_2\)–ZrO\(_2\) mixed oxides in dehydration of methanol to dimethyl ether. Catal. Lett. 96, 23–28 (2004)Google Scholar
  40. Wang, X., Zhong, S., Xiao, X.: Photo-catalysis of ethane and carbon dioxide to produce hydrocarbon oxygenates over ZnO-TiO\(_2\)/SiO\(_2\) catalyst. J. Mol. Catal. A Chem. 229, 87–93 (2005)CrossRefGoogle Scholar
  41. Wang, G.: Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO\(_2\) powders in ethanol-water mixed solutions. J. Mol. Catal. A Chem. 274, 185–191 (2007)Google Scholar
  42. Wu, C., Zhao, X., Ren, Y., Yue, Y., Hua, W., Cao, Y., Tang, Y., Gao, Z.: Gas-phase photo-oxidations of organic compounds over different forms of zirconia. J. Mol. Catal. A. 229, 233–239 (2005)CrossRefGoogle Scholar
  43. Ying, G., Chang, Y.: Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO\(_2\)–TiO\(_2\) nanocomposite. Environ. Sci. Technol. 40, 6444–6448 (2006)Google Scholar
  44. Yu, J., Yu, J.C., Zhao, X.: The effect of SiO\(_2\) addition on the grain size and photocatalytic activity of TiO\(_2\) thin films. J. Sol-Gel Sci. Technol. 24, 95–103 (2002)CrossRefMATHGoogle Scholar
  45. Yuranova, T., Mosteo, R., Bandara, J., Laub, D., Kiwi, J.: Self-cleaning cotton textiles surfaces modified by photoactive SiO\(_2\)/TiO\(_2\) coating. J. Mol. Catal. A Chem. 244, 160–167 (2005)CrossRefGoogle Scholar
  46. Zhang, Y., Reller, A.: Phase transformation and grain growth of doped nanosized titania. Mater. Sci. Eng. 19, 323–326 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nasrollah Najibi Ilkhechi
    • 1
  • Fallah Dousi
    • 2
  • Behzad Koozegar Kaleji
    • 1
  • Esmaiel Salahi
    • 3
  1. 1.Department of Materials Engineering, Faculty of EngineeringMalayer UniversityMalayerIran
  2. 2.Department of Physics, Faculty of ScienceMalayer UniversityMalayerIran
  3. 3.Material and Energy Research Center (MERC)KarajIran

Personalised recommendations