Optical and Quantum Electronics

, Volume 46, Issue 10, pp 1291–1296 | Cite as

Optimum ratio of electron-to-hole mobility in P3HT:PCBM organic solar cells

  • Omar Ramírez
  • Víctor Cabrera
  • Luis Martín Reséndiz


We investigate the influence of different electron-to-hole mobility ratios on the performance of a P3HT:PCBM bulk heterojunction organic solar cell by using numerical simulations. We show that in some particular mobility cases using a ratio between electron and hole mobility higher than one can improve power conversion efficiency.


Organic semiconductors Solar cells Charge carrier mobility Numerical simulations 



This work was supported by the Instituto Politécnico Nacional under SIP-project: 20130146. One of the authors (O.R.) acknowledges support by PIFI program from the IPN.


  1. Deibel, C., Wagenpfahl, A., Dyakonov, V.: Influence of charge carrier mobility on the performance of organic solar cells. Phys. Status Solidi Rapid Res. Lett. 2, 175 (2008)CrossRefADSGoogle Scholar
  2. Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., Marks, T.J.: p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105, 2783 (2008)CrossRefADSGoogle Scholar
  3. Kirchartz, T., Pieters, B.E., Taretto, K., Rau, U.: Mobility dependent efficiencies of organic bulk heterojunction solar cells: surface recombination and charge transfer state distribution. Phys. Rev. B 80, 035334 (2009)CrossRefADSGoogle Scholar
  4. Kirchartz, T., Pieters, B.E., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (2011)CrossRefADSGoogle Scholar
  5. Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)CrossRefADSGoogle Scholar
  6. Kotlarski, J.D., Blom, P.W.M.: Impact of unbalanced charge transport on the efficiency of normal and inverted solar cells. Appl. Phys. Lett. 100, 013306 (2012)CrossRefADSGoogle Scholar
  7. Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J.: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617 (2005)CrossRefGoogle Scholar
  8. MacKenzie, R.C.I., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT:PCBM solar cells. J. Phys. Chem. C 115, 9806 (2011)CrossRefGoogle Scholar
  9. MacKenzie, R.C.I., Shuttle, C.G., Chabinyc, M.L., Nelson, J.: Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv. Energy Mater. 2, 662 (2012)CrossRefGoogle Scholar
  10. Namkoong, G., Boland, P., Lee, K., Dean, J.: Design of organic tandem solar cells using PCPDTBT:\(\text{ PC }_{61}\)BM and P3HT:\(\text{ PC }_{71}\)BM. J. Appl. Phys. 107, 124515 (2010)CrossRefADSGoogle Scholar
  11. Tress, W., Leo, K., Riede, M.: Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: a drift-diffusion simulation study. Phys. Rev. B 85, 155201 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Omar Ramírez
    • 1
  • Víctor Cabrera
    • 1
  • Luis Martín Reséndiz
    • 1
  1. 1. Sección de Estudios de Posgrado e Investigación, UPIITAInstituto Politécnico NacionalMexicoMexico

Personalised recommendations