Optical and Quantum Electronics

, Volume 46, Issue 9, pp 1127–1137 | Cite as

Displacement gain dependent fidelity in quantum teleportation using entangled two-mode squeezed light

  • Dilip Kumar Giri
  • Ravindra Pratap Singh
  • Abir Bandyopadhyay


We study a scheme for quantum teleportation of a single-mode squeezed coherent state using entangled two-mode squeezed vacuum. We establish the analytic expression of displacement gain dependent fidelity in terms of the squeezing coherent parameter \(r\) and quantum channel parameter \(p\). The dependence of the optimum displacement gain for teleporting a squeezed coherent state upon the EPR entanglement is discussed. It shows that the fidelity of teleportation can be improved by tuning the displacement gain. We find that the fidelity increases with the increase of EPR parameter, while it decreases with the increase of the squeezing coherent parameter of the signal. We get infinite squeezing as a resource is required for an ideal and perfect teleportation of unknown input states. We show that the nonclassical properties of an unknown state to be teleported can be preserved in the teleportation.


Quantum teleportation Entangled states Fidelity  Displacement gain Squeezed states 


03.67.Hk 03.67.Lx 03.65Ud 



We acknowledge to colleagues of ‘Theoretical Physics Division’ at PRL especially Mr. Shashi Prabhakar for their continuous support during the summer research project work. One of the authors (DKG) is supported by IAS-INSA-NASI, ‘Summer Research Fellowships’, India. We would like to thank the referees for his comments and valuable suggestions.


  1. Anno, F.D., Siena, S.D., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301-1–022301-11 (2007)ADSGoogle Scholar
  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. Bouwmeester, D., Pan, Jian-Wei, Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  5. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)ADSCrossRefGoogle Scholar
  6. Braunstein, S.L., Pati, A.K.: Quantum Information with Continuous Variables edn. Kluwer Academic, Dordrecht (2003)CrossRefGoogle Scholar
  7. Cerf, N.J., Ipe, A., Rottenberg, X.: Cloning of continuous quantum variables. Phys. Rev. Lett. 85, 1754–1757 (2000)ADSCrossRefGoogle Scholar
  8. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefMATHGoogle Scholar
  9. Feng, M.-F., Zhang, Yi, Jiang, N.-Q., Zheng, Y.-Z.: Efficient two-mode squeezing and quantum-state teleportation of macroscopic atomic ensembles. Phys. Rev. A 79, 012327-1–012327-10 (2009)ADSCrossRefGoogle Scholar
  10. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)ADSCrossRefGoogle Scholar
  11. Giri, D.K. and Singh, R.P.: Quantum teleportation with two-mode squeezed light. In: Proceedings 99th Indian Science Congress, , pp. 116-117. KIIT University, Bhubaneswar (2012)Google Scholar
  12. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi distillation. Phys. Rev. A 60, 1888–1898 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. Ide, Toshiki, Hofmann, Holger F., Furusawa, Akira, Kobayashi, Takayoshi: Gain tuning and fidelity in continuous-variable quantum teleportation. Phys. Rev. A 65, 062303-1–062303-7 (2002)ADSCrossRefGoogle Scholar
  14. Irfan, Md, Qamar, S., Qamar, S.: Scheme for the teleportation of bipartite entangled state of the two cavity modes. Opt. Commun. 284, 675–680 (2011)ADSCrossRefGoogle Scholar
  15. Jing-Tao, Zhang, Guang-Qiang, He, Li-Jie, Ren, Gui-Hua, Zeng: The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states. Chin. Phys. B 20, 050311-1–050311-4 (2011)Google Scholar
  16. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys Rev. Lett. 82, 1784–1787 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. Van Loock, P., Braunstein, S.L.: Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000)ADSCrossRefGoogle Scholar
  19. Mari, A., Vitali, D.: Optimal fidelity of teleportation of coherent states and entanglement. Phys. Rev. A 78, 062340-1–062340-9 (2008)ADSCrossRefGoogle Scholar
  20. Milburn, G.J., Braunstein, S.L.: Quantum teleportation with squeezed vacuum states. Phys. Rev. A 60, 937–942 (1999)ADSCrossRefMathSciNetGoogle Scholar
  21. Nha, H., Carmichael, H.J.: Distinguishing two single-mode Gaussian states by homodyne detection: An information-theoretic approach. Phys. Rev. A 71, 032336-1–032336-7 (2005)ADSGoogle Scholar
  22. Olivares, S., Paris, M.G.A., Andersen, U.L.: Cloning of Gaussian states by linear optics. Phys. Rev. A 73, 062330-1–062330-8 (2006)ADSCrossRefGoogle Scholar
  23. Ou, Z.Y., Pereira, S.F., Kimble, H.J., Peng, K.C.: Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992)ADSCrossRefGoogle Scholar
  24. Owari, M., Plenio, M.B., Polzik, E.S., Serafini, A., Wolf, M.M.: Squeezing the limit: Quantum benchmarks for the teleportation and storage of squeezed states. New J. Phys. 10, 113014-1–113014-20 (2008)ADSGoogle Scholar
  25. Ralph, T.C., Lam, P.K.: Teleportation with bright squeezed light. Phys. Rev. Lett. 81, 5668–5671 (1998)ADSCrossRefGoogle Scholar
  26. Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(R)-1–010303(R)-4 (1999)CrossRefMathSciNetGoogle Scholar
  27. Scutaru, H.: Fidelity for displaced squeezed thermal states and the oscillator semigroup. J. Phys. A Math. Gen. 31, 3659–3663 (1998)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. Simon, R., Sudarshan, E.C.G., Mukunda, N.: Gaussian Wigner distributions in quantum mechanics and optics. Phys. Rev. A 36, 3868–3880 (1987)ADSCrossRefMathSciNetGoogle Scholar
  29. Simon, R., Mukunda, N., Dutta, B.: Quantum noise matrix for multimode systems: U(n)-invariance, squeezing and normal forms. Phys. Rev. A 49, 1567–1583 (1994)ADSCrossRefMathSciNetGoogle Scholar
  30. Takei, N., Aoki, T., Koike, S., Yoshino, K., Wakui, K., Yonezawa, H., Hiraoka, T., Mizuno, J., Takeoka, M., Ban, M., Furusawa, A.: Experimental demonstration of quantum teleportation of a squeezed state. Phys. Rev. A 72, 042304-1–042304-7 (2005)ADSCrossRefGoogle Scholar
  31. Tan, Sze M.: Confirming entanglement in continuous variable quantum teleportation. Phys. Rev. A 60, 2752–2758 (1999)ADSCrossRefGoogle Scholar
  32. Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Reports on Mathematical Physics 9, 273–279 (1975)ADSCrossRefMathSciNetGoogle Scholar
  33. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)ADSCrossRefMathSciNetGoogle Scholar
  34. Wagner Jr, R., Clemens, James P.: Fidelity of quantum teleportation based on spatially and temporally resolved spontaneous emission. J. Opt. Soc. Am. B 27, A73–A80 (2010)ADSCrossRefGoogle Scholar
  35. Yukawa, M., Benichi, H., Furusawa, A.: High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Phys. Rev. A 77, 022314-1–022314-5 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dilip Kumar Giri
    • 1
    • 2
  • Ravindra Pratap Singh
    • 2
  • Abir Bandyopadhyay
    • 2
    • 3
  1. 1.Department of PhysicsSindri College, SindriDhanbadIndia
  2. 2.Theoretical Physics Division, Quantum Optics and Quantum Information GroupPhysical Research LaboratoryNavrangpura, AhmedabadIndia
  3. 3.Hooghly Engineering and Technology CollegeHooghlyIndia

Personalised recommendations