Advertisement

Optical and Quantum Electronics

, Volume 46, Issue 8, pp 999–1019 | Cite as

Novel cobweb-topology WDM access network architecture featuring ultra-high reliability and easy scalability

  • Yan Gong
  • Chaoqin Gan
  • Chenwei Wu
  • Ruixue Wang
Article

Abstract

A wavelength division multiplexing access network architecture with cobweb topology is proposed in this paper. It can be a candidate for metro access network with high reliability in the future. This architecture can provide two protection methods. The protection strategy which can maximize the protected traffic is elaborated in the context. Mathematical models of system performance such as network scale and link reliability are established and analyzed in this paper.

Keywords

Wavelength division multiplexing Cobweb topology Access network  High reliability Protection strategy Network scale Link reliability 

Notes

Acknowledgments

This work is supported by Programs of Natural Science Foundation of China (No.61132004 and 61275073), Shanghai Science and Technology Development Funds (No. 11511502500 and 11510500500), Shanghai Leading Academic Discipline Project and STCSM (No. S30108 and 08DZ2231100).

References

  1. Chen, J., Wosinska, L., Machuca, C., Jaeger, M.: Cost vs. reliability performance study of fiber access network architectures. IEEE Commun. Mag. 48, 56–65 (2010)CrossRefGoogle Scholar
  2. Chen, J., Wosinska, L., Niaz Chughtai, M., Forzati, M.: Scalable passive optical network architecture for reliable service delivery. J. Opt. Commun. Netw 3, 667–673 (2011)Google Scholar
  3. Cheng, X., Yeo, Y.-K., Shao, X., Wang, Y., Yaohui, B.: A novel distributed self-protection scheme for WDM-PON using a circulator-AWG based wavelength router. In: Communications and Networking in China (CHINACOM), pp. 1–4 (2010)Google Scholar
  4. Chowdhury, A., Chien, H.-C., Fan, S.-H., Liu, C., Su, C. Chang, G.-K.: A survivable protection and restoration scheme using wavelength switching of integrated tunable optical transmitter for high throughput WDM-PON system. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, pp. 1–3 (2011)Google Scholar
  5. Diao, S.L.: The Security Assessment of Power System Optical Fiber Communication, Chaps. 2, 3, pp. 12–23. North China Electric Power University (2007)Google Scholar
  6. Dong, X., Shum, P., Ngo, N.Q., Zhao, C., Yang, J., Chan, C.C.: A bandwidth-tunable Fbg filter With fixed center wavelength. Microw. Opt. Technol. Lett. 41, 22–24 (2004)CrossRefGoogle Scholar
  7. Farjady, F., Kim, K.S., El Dahdah, N., Doran, N.J.: Cost-effective upgrade of WDM all-optical networks using overlay fibres and hop reduction links. Eur. Trans. Telecommun. 21, 563–566 (2010)CrossRefGoogle Scholar
  8. Grobe, K., Roppelt, M., Autenrieth, A., Elbers, J.-P., Eiselt, M.: Cost and energy consumption analysis of advanced WDM-PONs. IEEE Commun. Mag. 49, s25–s32 (2011)CrossRefGoogle Scholar
  9. Hattori, K., Nakagawa, M., Kimishima, N., Katayama, M., Misawa, A., Hiramatsu, A.: Proposed optical multicasting method using tunable lasers and cyclic AWGs. OECC 2012, pp. 22–23 (2008)Google Scholar
  10. Ishii, K., Hasegawa, H., Sato, K., Kamei, S., Takahashi, H., Okuno, M.: Monolithically integrated waveband selective switch using cyclic AWGs. In: ECOC 2008, pp. 93–94 (2008)Google Scholar
  11. Kim, J.-Y., Mun, S.-G., Lee, H.-K., Lee, C.-H.: Self-restorable WDM-PON with a color-free optical source. J. Opt. Commum. Netw. 1, 565–570 (2009)CrossRefGoogle Scholar
  12. Lee, J.H., Choi, K.-M., Moon, J.-H., Mun, S.-G., Lee, H.-K., Kim, J.-Y., Lee, C.-H.: A seamless evolution method with protection capability for next-generation access networks. J. Lightw. Technol. 27, 4311–4318 (2009)ADSCrossRefGoogle Scholar
  13. Merayo, N., Jiménez, T., Fernández, P., Durán, R.J., Lorenzo, R.M., de Miguel, I., Abril, E.J.: A bandwidth assignment polling algorithm to enhance the efficiency in QoS long-reach EPONs. Eur. Trans. Telecommun. 22, 35–44 (2011)CrossRefGoogle Scholar
  14. Rostami, A., Wolisz, A., Feldmann, A.: Traffic analysis in optical burst switching networks: a trace-based case study. Eur. Trans. Telecommun. 20, 633–649 (2009)CrossRefGoogle Scholar
  15. Sambo, N., Cugini, F., Bottari, G., Iovanna, P., Castoldi, P.: Encompassing ROADM add/drop constraints in GMPLS-based WSONs. Trans. Emerg. Telecommun. Technol. 23, 86–95 (2012)CrossRefGoogle Scholar
  16. Tran, A.V., Chae, C.-J.,Tucker, R.S.: Ethernet PON or WDM PON: a comparison of cost and reliability. In: TENCON 2005, 2005 IEEE Region 10, pp. 1–6 (2005)Google Scholar
  17. Tsai, C.-M., Taga, H., Yang, C.-H., Lo, Y.-L., Liang, T.-C.: Demonstration of a ROADM using cyclic AWGs. J. Lightw. Technol. 29, 2780–2784 (2011)ADSCrossRefGoogle Scholar
  18. Yeh, C.H., Chow, C.W., Shih, F.Y., Wu, Y.F., Chi, S.: An optical switch-based self-restored WDM-PON architecture against fiber faults. In: Communications and Photonics Conference and Exhibition (ACP), pp. 136–137 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yan Gong
    • 1
  • Chaoqin Gan
    • 1
  • Chenwei Wu
    • 1
  • Ruixue Wang
    • 1
  1. 1.Key Laboratory of Specialty Fiber Optics and Optical AccessShanghai UniversityShanghaiChina

Personalised recommendations