Skip to main content
Log in

Theoretical analysis on optoelectronic performances of long wavelength transistor lasers: base width variation effects

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigate the base width variation effects on various optical and electrical characteristics of double heterostructure long wavelength transistor laser (DH-LWTL). Considering the device structure, the base region geometry of a LWTL significantly affects its optoelectronic performance. We derive theoretical approximation of optical confinement factor (OCF), where we study the relationship between the base width and the OCF. In order to analyze optoelectronic performance of the LWTL, however, we have to consider the optical loss in base region with intervalence band absorption as the main factor in our calculation approach. We show that both the OCF and the optical loss have opposite trends with base width variation. Transient parameters including resonance peak and frequency are also inspected for their dependence on the base width as well as doping concentration. According to our simulations, we expect a minimum threshold current density of \(4.38\, \hbox {KA/cm}^{2}\) and a maximum cut-off frequency of 28.22 GHz for 38 nm and 305 nm base widths, respectively. A relatively fast process of “carrier extinction” is also anticipated for narrow enough bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

QW:

Quantum well

DH-LWTL:

Double heterostructure long wavelength transistor laser

OCF:

Optical confinement factor

DL:

Diode laser

LET:

Light emitting transistor

References

  • Coldren, L.A., Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York (1995)

    Google Scholar 

  • Coleman, J.J., Beernik, K.J., Givens, M.E.: Threshold current density in strained layer in In\(_{x}\)Ga\(_{1-x}\) As quantum-well heterostructure layers. IEEE J. Quantum Electron. 28(10), 1983–1989 (1992)

    Article  ADS  Google Scholar 

  • Dixon, F., Feng, M., Holonyak, N., Huang, Y., Zhang, Z.B., Ryou, J.H., Dupuis, R.D.: Transistor laser with emission wavelength at 1,544 nm. Appl. Phys. Lett. 93(2), 0211111–0211113 (2008)

    Article  Google Scholar 

  • Feng, M., Holonyak, N., Then, H.W., Walter, G.: Charge control analysis of transistor laser operation. Appl. Phys. Lett. 91, 053501–053503 (2007) doi:10.1063/1.2767172

    Google Scholar 

  • Feng, M., Then, H.W., Holonyak, N., Walter, G., James, A.: Resonance-free frequency response of a semiconductor laser. J. Appl. Phys. 95(3), 0335091–0335093 (2009)

    Google Scholar 

  • Holonyak, N., Feng, M.: The transistor lase. IEEE Spectr. 43(2), 50–55 (2006)

    Article  Google Scholar 

  • Huang, Y., Ryou, J., Dupuis, R.D., Dixon, F., Feng, M., Holonyak, N., Kuciauskas, D.: Doping-dependent device functionality of InP/InAlGaAs long-wavelength light-emitting transistors. Appl. Phys. Lett. 99, 1035021–1035023 (2011a). doi:10.1063/1.3633345

    Google Scholar 

  • Huang, Y., Ryou, J., Dupuis, R.D., Dixon, F., Feng, M., Holonyak, N.: InP/InAlGaAs light-emitting transistor lasers with a carbon-doped base layer. J. Appl. Phys. 109, 0631061–0631066 (2011b). doi:10.1063/1.3561368

    Google Scholar 

  • Huang, Y., Ryou, J., Dupuis, R.D.: Epitaxial structure design of a long-wavelength InAlGaAs/InP transistor laser. IEEE J. Quantum Electron. 47(5), 642–650 (2011c). doi:10.1109/JQE.2011.2108636

    Article  ADS  Google Scholar 

  • Kaatuzian, H.: Photonics, vol. 1, 3rd edn. Amirkabir University (AKU) Press, Tehran (2012)

  • Lee, J., Vassel, M.O.: The small-signal response of \(1.5\,\upmu \) multiple-quantum-well lasers in a two-band-model approximation. IEEE J. Quantum Electron. 28(3), 624–634 (1992)

    Article  ADS  Google Scholar 

  • Liu, W.: Fundamentals of III–V Devices. Wiley, New York (1999)

    Google Scholar 

  • Ma, T.A., Li, Z.M., Makino, T., Wartak, M.S.: Approximate optical gain formulas for \(1.55\,\upmu \)m strained quaternary quantum-well lasers. IEEE J. Quantum Electron. 31(1), 29–34 (1995)

    Article  ADS  Google Scholar 

  • Matsui, Y., Murai, H., Arahira, S., Kutsuzaewa, S., Ogawa, Y.: 30-GHz bandwidth \(1.55\,\upmu \)m strain-compensated InGaAlAs-InGaAsP MQW laser. IEEE Photon. Technol. Lett 9(1), 25–27 (1997)

    Article  ADS  Google Scholar 

  • Mojaver, H.R., Kaatuzian, H.: Analysis and improvement of optical frequency response in a long wavelength transistor laser. Opt. Quant. Electron. 44, 45–54 (2012). doi:10.1007/s11082-011-9531-2

    Article  Google Scholar 

  • Nagarajan, R., Fukushima, T., Corzine, S.W.: Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett. 59, 1835–1837 (1991)

    Article  ADS  Google Scholar 

  • Seki, S., Yamanaka, T., Lui, W., Yokoyama, K.: Theoretical analysis of differential gain of \(1.55\, \mu \)m InGaAsP/lnP compressive-strained multiple-quantum-well lasers. J. Appl. Phys. 75(3), 1299–1303 (1994)

    Article  ADS  Google Scholar 

  • Shi, W., Duan, Z., Vafaei, R., Rouger, N., Faraji, B., Chrostowski, L.: Simulation of a 1550 nm InGaAsPInP transistor laser. SPIE 2009 proceeding. doi:10.1117/12.841564

  • Shiaro, M., Sato, T., Takino, Y., Sato, N., Nishiyama, N., Arai, S.: Lasing operation of long-wavelength transistor laser using AGaInAs/InP quantum well active region. IRPM 2011 proceeding (2011)

  • Streifer, W., Scifres, D.R., Burnham, R.D.: Optical analysis of multiple-quantum-well lasers. Appl. Opt. 18(21), 3547–3548 (1979)

    Article  ADS  Google Scholar 

  • Taghavi, I., Kaatuzian, H.: Gain-bandwidth trade-off in a transistor laser: quantum well dislocation effects. Opt. Quant. Electron. 41, 481–488 (2010). doi:10.1007/s11082-010-9384-0

    Article  Google Scholar 

  • Taghavi, I., Kaatuzian, H., Leburton, J.P.: Performance optimization of multiple quantum well transistor laser. IEEE J. Quantum Electron. 49(4), 426–435 (2013a)

    Article  ADS  Google Scholar 

  • Taghavi, I., Kaatuzian, H., Leburton, J.P.: A nonlinear gain model for multiple quantum well transistor lasers. Semicond. Sci. Technol. 28 (2013b). doi:10.1088/02681242/28/2/025022

  • Then, H.W., Feng, M., Holonyak, N., Wu, C.H.: Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping. Appl. Phys. Lett. 91, 03350510335053 (2007). doi:10.1063/1.2759263

    Google Scholar 

  • Zah, C.E., Bhat, R., Menocal, S.G., Favire, F., Andreadakis, N.C., Koza, M.A., Caneau, C., Schwarz, S.A., Lo, Y., Lee, T.P.: Cavity length and doping dependence of \(1.5\,\upmu \)m GaInAs/GaInAsP multiple quantum well laser characteristics. IEEE Photon. Technol. Lett 2(4), 231–233 (1990)

    Article  ADS  Google Scholar 

  • Zhang, L., Leburton, J.P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. IEEE J. Quantum Electron. 45(4), 359–366 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farjadian, M.R., Kaatuzian, H. & Taghavi, I. Theoretical analysis on optoelectronic performances of long wavelength transistor lasers: base width variation effects. Opt Quant Electron 46, 871–881 (2014). https://doi.org/10.1007/s11082-013-9798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9798-6

Keywords

Navigation