Advertisement

Optical and Quantum Electronics

, Volume 46, Issue 6, pp 769–777 | Cite as

A broadcasting multiple blind signature scheme based on quantum teleportation

  • Yuan Tian
  • Hong Chen
  • Shufan Ji
  • Zhengping Han
  • Haigang Lian
  • Xiaojun Wen
Article

Abstract

Using the quantum teleportation, a broadcasting multiple blind signature scheme is proposed. Different from classical multiple signature and current quantum signature schemes, which could only deliver either multiple signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum teleportation. Our proposed scheme has the properties of multiple signature, blindness, non-disavowal, non-forgery and traceability. To the best of our knowledge, we are the first to propose the broadcasting multiple blind signature using the quantum teleportation.

Keywords

Broadcasting multiple blind signature Quantum encryption algorithm Quantum teleportation Quantum cryptography 

References

  1. Bennett, C., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. Chaum, D.: Blind signature for untraceable payments. In: Proceedings of the CRYPTO’82, pp. 199–203 (1983)Google Scholar
  3. Gottesman, D., Chuang, I.: Quantum digital signatures, [2001-05-08]. http://arxiv.org/abs/quant-ph/0105032.pdf
  4. Harn, L.: New digital signature scheme based on logarithm. Electron. Lett. 30(5), 396–398 (1994)CrossRefGoogle Scholar
  5. Lee, H., Hong, C., Kim, H., et al.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5–6), 295–300 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)CrossRefMathSciNetGoogle Scholar
  7. Shor, P., et al.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  8. Wang, M.-M., Chen, X.-B., Niu, X.-X., Yang, Y.-X.: Re-examining the security of blind quantum signature protocols. Physica Scripta 86, 055006–055012 (2012)CrossRefGoogle Scholar
  9. Wen, X., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Z. Naturforschung A 62a, 147–151 (2007)Google Scholar
  10. Wen, X., Liu, Y., Zhang, P.: Digital multi-signature based on the controlled quantum teleportation. Wuhan Univ. J. Nat. Sci. 12(1), 029–032 (2007)CrossRefMathSciNetGoogle Scholar
  11. Wen, X., Liu, Y., Zhou, N.: Secure quantum telephone. Opt. Commun. 275(1), 278–282 (2007)ADSCrossRefGoogle Scholar
  12. Wen, X., Liu, Y.: A realizable quantum sequential multi-signature scheme. Acta Electronica Sinica (in Chinese) 35(6), 81–85 (2007)MathSciNetGoogle Scholar
  13. Wen, X., Liu, Y.: Secure authentic digital signature scheme using quantum fingerprinting. Chin. J. Electron. 17(2), 340–344 (2008)Google Scholar
  14. Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  15. Wen, X., Tian, Y., Ji, L., Niu, X.: A group signature scheme based on quantum teleportation. Physica Scripta 81, 055001–055005 (2010)ADSCrossRefGoogle Scholar
  16. William, S.: Cryptography and Network Security: Principles and Practice, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (2003)Google Scholar
  17. Wu, T., Chou, W.: Two-based multisignature protocols for sequential and broadcasting architecture. Comput. Commun. 19(9/10), 851–856 (1996)CrossRefGoogle Scholar
  18. Zeng, G., Ma, W., Wang, X., Zhu, H.: Signature scheme based on quantum cryptography. Acta Electronica Sinica 29(8), 1098–1100 (2001)Google Scholar
  19. Zeng, G., Christoph, K.: An arbitrated quantum signature scheme. Phys. Rev. A. 65(4), 042312–042317 (2002)ADSCrossRefGoogle Scholar
  20. Zuo, H., Zhang, K., Song, T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12, 2343–2353 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuan Tian
    • 1
    • 2
    • 4
  • Hong Chen
    • 1
    • 2
  • Shufan Ji
    • 3
  • Zhengping Han
    • 4
  • Haigang Lian
    • 4
  • Xiaojun Wen
    • 5
  1. 1.Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of EducationRenmin University of ChinaBeijingChina
  2. 2.School of InformationRenmin University of ChinaBeijingChina
  3. 3.School of Computer Science and EngineeringBeihang UniversityBeijingChina
  4. 4.China Computer User Association Information Protection BranchBeijingChina
  5. 5.School of Electronics and Information EngineeringShenzhen PolytechnicShenzhenChina

Personalised recommendations