Optical and Quantum Electronics

, Volume 46, Issue 1, pp 235–245 | Cite as

Calculation of effective index for different dielectric waveguides structures made of PVCi/PMATRIFE polymers at telecom-wavelength \(\lambda =1.55\,\upmu \)m

  • Abdellatif Mamanou
  • Fethi Khelfaoui
  • Kamel Edinne Aiadi


In this paper, a number of polymeric waveguide structures have been analyzed by using two distinct techniques which are: effective index method (EIM) and numerical simulation based on finite difference method (FDM). The main aim of this investigation is the calculation of effective indexes (EI) of the following structures: rib, ridge and buried channel waveguides at telecom wavelength \(\lambda =1.55\,\upmu \hbox {m}\) for different dimensions of waveguide cores varying from 1.5–4 \(\upmu \hbox {m}\). Moreover, other optical propagation characteristics such as: confinement factor, normalized and propagation constant have been studied in TE polarisation. Otherwise the effect of the structure parameters and dimensions on the dispersion characteristics has been investigated. On the other hand, the optical field distribution has been computed using commercial software named OlympIOs. The polymers applied in the design of waveguide structures are the PVCi (n = 1,562 \(\lambda = {1.55}\,\upmu \)m) used as core layer and the PMATRIFE (n = 1,409 \(\lambda = 1.55\,\upmu \)m) used as substrate or cladding layer. The results obtained using EIM and simulation based on FDM show that effective index and field confinement factor of TE fundamental mode increase monotonously with the increasing dimension of core. The obtained results are in good agreement with published data based on other numerical methods.


Effective index (EI) Effective index method (EIM) Finite difference method (FDM) Waveguides Integrated optics Polymers PMATRIFE PVCi Propagation constant Telecommunication wavelength Buried channel waveguide 


  1. Bosc, D., Grosso, P., Hardy, I., Assaïd, I., Batté, T., Haesaert, S., Vinouze, B.: High refractive index contrast in a photosensitive polymer and waveguide photo-printing demonstration. Opt. Commun. 235, 281–284 (2004)ADSCrossRefGoogle Scholar
  2. Bozhevolnyi, I.S.: Effective-index modeling of channel Plasmon polaritons. Opt. Express 14(20), 9467–9476 (2006)ADSCrossRefGoogle Scholar
  3. Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75, 245405 (2007)ADSCrossRefGoogle Scholar
  4. Ismail, M.M., Meor, M.A., Othman, M.A., Misran, M.H., Sulaiman, H.A., Azmin, F.A.: Buried vs. ridge optical waveguide modeling for light trapping into optical fiber. Int. J. Eng. Innov. Technol. (IJEIT) 2, 273–278 (2012)Google Scholar
  5. Kassim, N.M., Mohammad, A.B., Supa”at, A.S.M., Ibrahim, M.H., Gang, S.Y.: Single mode rib optical waveguide, modeling techniques. RF and Microwave Conference, RFM. pp. 272–276 (2004)Google Scholar
  6. Lee, K.S.: Nonlinear Optical, Photorefractive and Two-Photon. Absorption Polymers for Photonics Applications II. Advances in Polymer Science, vol. 161. Springer, Berlin (2003)Google Scholar
  7. Lifante, G.: Integrated Photonics Fundamentals. Wiley, Chichester (2003)CrossRefGoogle Scholar
  8. Lyutakov, O., Jiří, T., Prajzler, V., Huttel, I., Hnatowicz, V., Švorčík, V.: Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films 519, 1452–1457 (2010)ADSCrossRefGoogle Scholar
  9. Pollock, C.R.: Fundamentals of Optoelectronics. School of Electrical Engineering Cornell University (1995)Google Scholar
  10. Pun, Y.B., Tung, K.K., Wong, wh: Polymeric optical waveguides using direct ultraviolet photolithography materials science and processing. Appl. Phys. A 80, 621–626 (2005)ADSCrossRefGoogle Scholar
  11. Scheuer, J., Yariv, A.: Fabrication and characterization of low-loss polymeric waveguides and micro-resonators. J. Eur. Opt. Soc. 1, 1–5 (2006)Google Scholar
  12. Zong, L.J., Luo, F.G., Rong, Zheng, Ding, X., Tao, G., LI, B., Zhou, W.L., Yu, Z.H.: Fabrication and performance analysis of polymer light waveguides in EOPCB. Optoelectron. Lett. 5, 324–328 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Abdellatif Mamanou
    • 1
  • Fethi Khelfaoui
    • 1
  • Kamel Edinne Aiadi
    • 1
  1. 1.Laboratoire LRPPS, Faculté des Sciences et de la Technologie et des Sciences de la MatièreUniversité Kasdi Merbah OuarglaOuarglaAlgeria

Personalised recommendations