Optical and Quantum Electronics

, Volume 46, Issue 2, pp 319–329 | Cite as

The effect of nonlinear gain on the characteristics of an optically injected VCSEL and cavity solitons

  • Mansour Eslami
  • Reza Kheradmand
  • Ghafour Hashemvand


Using the Lagrange method to fit the curve of maximum gain as a function of carrier density for an active region consisting of an AlGaAs/GaAs layers sandwiched between DBR layers, it is found that the curve is better approximated assuming a quadratic dependence on the carrier density. By summarizing all of the calculations into a nonlinear gain coefficient parameter, \(\beta \), in the Maxwell–Bloch equations we numerically studied the effect of nonlinear gain on the characteristics of the VCSEL and also on the cavity solitons (CSs) forming in such a device. Particularly, it is shown that with nonlinear gain a wider locked region can be achieved along with enhanced sustained relaxation oscillation amplitude. The switching on/off time of CSs is modified and there appears a considerable enhancement in their efficiency and contrast.


Bistability Relaxation oscillation VCSEL Semiconductor gain  Cavity soliton 


  1. Ackemann, T., Firth, W.J., Oppo, G.L.: Fundamentals and applications of spatial dissipative solitons in photonic devices. In: Arimondo, P.R.B.E., Lin, C.C. (eds.) Advances in Atomic, Molecular and Optical Physics, chap.6, vol. 57, pp. 323–421. Academic Press (2009)Google Scholar
  2. Barbay, S., Kuszelewicz, R., Tredicce, J.R.: Cavity solitons in VCSEL devices. Adv. Opt. Technol. Article ID 628761 (2011)Google Scholar
  3. Barland, S., Tredicce, J.R., Brambilla, V., Lugiato, L.A., Balle, S., Giudici, M., Maggipinto, T., Spinelli, L., Tissoni, G., Knodl, T., Miller, M., Jager, R.: Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002)ADSCrossRefGoogle Scholar
  4. Coullet, P., Riera, C., Tresser, C.: A new approach to data storage using localized structures. Chaos 14, 193–198 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. Eslami, M., Kheradmand, R., Aghdami. K.M.: Complex behavior of VCSELs with optical injection. Physica Scripta (published) (2013)Google Scholar
  6. Eslami, M., Kheradmand, R.: All optical logic gates based on cavity solitons with nonlinear gain. Opt. Rev. 19(4), 242–246 (2012)CrossRefGoogle Scholar
  7. Firth, W.J., Weiss, C.O.: Cavity and feedback solitons. Opt. Photon. News 13(2), 54–58 (2002)ADSCrossRefGoogle Scholar
  8. Hachair, X., Barland, S., Furfaro, L., Giudici, M., Balle, S., Tredicce, J.R., Brambilla, M., Maggipinto, T., Perrini, I., Tissoni, G., Lugiato, L.A.: Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold. Phys. Rev. A. 69, 043817 (2004)ADSCrossRefGoogle Scholar
  9. Hachair, X., Pedaci, F., Caboche, E., Barland, S., Giudici, M., Tredicce, J.R., Prati, F., Tissoni, G., Kheradmand, R., Lugiato, L.A., Protsenko, I.: Cavity solitons in a driven VCSEL above threshold. IEEE J. Sel. Top. Quantum Electron. 12, 339–351 (2006)CrossRefGoogle Scholar
  10. Lugiato, L., Prati, F., Tissoni, G., et al.: Cavity solitons in semiconductor devices. In: Dissipative Solitons From Optics to Biology and Medicine, vol. 751 of Lecture Notes in Physics, pp. 1–42. Springer, Berlin Heidelberg, Germany (2008)Google Scholar
  11. McDonald, G.S., Firth, W.J.: Spatial solitary-wave optical memory. JOSA B 7, 1328–1335 (1990)ADSCrossRefGoogle Scholar
  12. McIntyre, C., Yao, A.M., Oppo, G.-L., Prati, F., Tissoni, G.: All-optical delay line based on a cavity soliton laser with injection. Phys. Rev. A 81, 013838 (2010)ADSCrossRefGoogle Scholar
  13. Oppo, G.-L., D’Alessandro, G., Firth, W.J.: Spatiotemporal instabilities of lasers in models reduced via center manifold techniques. Phys. Rev. A 44, 4712 (1991)ADSCrossRefGoogle Scholar
  14. Oppo, G.-L., Yao, A.M., Prati, F., de Valcarcel, G.J.: Longterm spatiotemporal dynamics of solid-state lasers and vertical-cavity surface-emitting lasers. Phys. Rev. A 79, 033824 (2009)ADSCrossRefGoogle Scholar
  15. Prati, F., Columbo, L.: Long-wavelength instability in broad-area semiconductor lasers. Phys. Rev. A 75, 053811 (2007)ADSCrossRefGoogle Scholar
  16. Prati, F., Tissoni, G., McIntyre, C., Oppo, G.-L.: Static and dynamic properties of cavity solitons in VCSELs with optical injection. Eur. Phys. J. D 59, 139–147 (2010)Google Scholar
  17. Spinelli, L., Tissoni, G., Brambilla, M., Prati, F., Lugiato, L.A.: Spatial solitons in semiconductor microcavities. Phys. Rev. A 58, 2542 (1998)ADSCrossRefGoogle Scholar
  18. Wieczorek, S., Krauskopf, B., Lenstra, D.: A unifying view of bifurcations in a semiconductor laser subject to optical injection. Opt. Commun. 172, 279–295 (1999)ADSCrossRefGoogle Scholar
  19. Wieczorek, S., Krauskopf, B., Simpson, T.B., Lenstra, D.: The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416, 1–128 (2005)ADSCrossRefGoogle Scholar
  20. Wieczorek, S., Chow, W.W., Chrostowski, L., Chang-Hasnain, C.J.: Improved semiconductor-laser dynamics from induced population pulsation. IEEE J. Quantum Electron. 42, 552–562 (2006)ADSCrossRefGoogle Scholar
  21. Yao, J., Agrawal, G.P., Gallion, P., Bowden, C.M.: Semiconductor laser dynamics beyond the rate-equation approximation. Opt. Commun. 119, 246–255 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mansour Eslami
    • 1
  • Reza Kheradmand
    • 1
  • Ghafour Hashemvand
    • 2
  1. 1.Photonics Group, Research Institute for Applied Physics and AstronomyUniversity of TabrizTabrizIran
  2. 2.Photonics GroupKerman Graduate University of TechnologyKermanIran

Personalised recommendations