Optical and Quantum Electronics

, Volume 45, Issue 12, pp 1269–1275 | Cite as

Fabrication of two-dimensional elliptic photonic lattices in photorefractive crystal by optical induction method

  • Wentao Jin
  • Yuanmei Gao
Original Paper


We fabricate two-dimensional elliptic photonic lattices in iron-doped lithium niobate photorefractive crystal for the first time with optical induction method. The experimental setup of our method is very simple and flexible without complicated optical adjustment system. We analyze and verify the two-dimensional elliptic photonic lattices by plane wave guiding, far field diffraction pattern imaging, and Brillouin-zone spectroscopy. Induced elliptic photonic lattices can stably exist for a long time in the iron-doped lithium niobate crystal. The induced two-dimensional elliptic photonic lattices might offer an easy method to study generic band gap phenomena in anisotropic periodic structures.


Optically induced Two-dimensional Elliptic Photonic lattices  Photorefractive Lithium niobate crystal 



The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant No. 10974121), the Natural Science Foundation of Shandong Province (Grant No. ZR2012EMQ012), the open subject of state key laboratory of crystal materials (Shandong University, Grant No. KF1001) and the science and technology development plan of Tai’An (Grant No. 20112023).


  1. Bartal, G., Cohen, O., Buljan, H., Fleischer, J.W., Manela, O., Segev, M.: Brillouin zone spectroscopy of nonlinear photonic lattices. Phys. Rev. Lett. 94, 163902 (2005)ADSCrossRefGoogle Scholar
  2. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S., Lopez, C., Meseguer, F., Miguez, H., Mondia, J., Ozin, G., van Toader, O., Driel, H.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000)ADSCrossRefGoogle Scholar
  3. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)ADSCrossRefGoogle Scholar
  4. Christodoulides, D.N., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003)ADSCrossRefGoogle Scholar
  5. Edelmann, A.G., Helfert, S.F.: Three-dimensional analysis of hexagonal structured photonic crystals using oblique coordinates. Opt. Quantum Electron. 41, 243–254 (2009)CrossRefGoogle Scholar
  6. Fleischer, J.W., Carmon, T., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003a)ADSCrossRefGoogle Scholar
  7. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003b)Google Scholar
  8. Guo, H., Liao, Q., Yu, T., Chen, S., Huang, Y.: Design of High Efficiency and Large Separating Angle Beam Splitter Based on Photonic Crystal Cavity Resonator. Mod. Phys. Lett. B 25, 1963–1969 (2011)ADSCrossRefMATHGoogle Scholar
  9. Jin, W., Gao, Y.: Optical fabrication of three-dimensional photonic lattices in \(\text{ LiNbO }_{3}\):Fe crystals with a single amplitude mask. Opt. Commun. 284, 5814–5817 (2011)ADSCrossRefGoogle Scholar
  10. Jin, W., Gao, Y.: Optically induced two-dimensional photonic quasicrystal lattices in iron-doped lithium niobate crystal with an amplitude mask. Appl. Phys. Lett. 101, 141104 (2012)ADSCrossRefGoogle Scholar
  11. Li, Z.Y., Gu, B.Y., Yang, G.Z.: Large absolute band gap in 2D anisotropic photonic crystals. Phys. Rev. Lett. 81, 2574–2577 (1998a)ADSCrossRefGoogle Scholar
  12. Li, Z.Y., Wang, J., Gu, B.Y.: Creation of partial band gaps in anisotropic photonic-band-gap structures. Phys. Rev. B 58, 3721–3729 (1998b)ADSCrossRefGoogle Scholar
  13. Martin, H., Eugenieva, E.D., Chen, Z., Christodoulides, D.N.: Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett. 92, 123902 (2004)ADSCrossRefGoogle Scholar
  14. Mizeikis, V., Seet, K.K., Juodkazis, S., Misawa, H.: Three-dimensional woodpile photonic crystal templates for infrared spectral range. Opt. Lett. 29, 2061–2063 (2004)ADSCrossRefGoogle Scholar
  15. Qiu, M., He, S.: Large complete band gap in two-dimensional photonic crystals with elliptic air holes. Phys. Rev. B 60, 10610–10612 (1999)ADSCrossRefGoogle Scholar
  16. Rose, P., Terhalle, B., Imbrock, J., Denz, C.: Optically-induced photonic superlattices by holographic multiplexing. J. Phys. D 41, 224004 (2008)ADSCrossRefGoogle Scholar
  17. Sato, T., Miura, K., Ishino, N., Ohtera, Y., Tamamura, T., Kawakami, S.: Photonic crystals for the visible range fabricated by autocloning technique and their application. Opt. Quantum Electron. 34, 63–70 (2002)CrossRefGoogle Scholar
  18. Smirnov, E., Stepić, M., Rüter, C.E., Kip, D., Shandarov, V.: Observation of staggered surface solitary waves in one-dimensional waveguide arrays. Opt. Lett. 31, 2338–2340 (2006)ADSCrossRefGoogle Scholar
  19. Subramania, G., Lin, S.Y.: Fabrication of three-dimensional photonic crystal with aligmnent based on electron beam lithography. Appl. Phys. Lett. 85, 5037–5039 (2004)ADSCrossRefGoogle Scholar
  20. Sun, X.H., Tao, X.M., Ye, T.J., Xue, P., Szeto, Y.S.: Optics design and fabrication of 3D electrically switchable hexagonal photonic crystal. Appl. Phys. B 87, 65–69 (2007)ADSCrossRefGoogle Scholar
  21. Yu, T.B., Jiang, X.Q., Yang, J.Y., Zhou, H.F., Liao, Q.H., Wang, M.H.: Self-imaging effect of TM mode in photonic crystal multimode waveguides only exhibiting band gaps for TE modes. Phys. Lett. A 369, 167–171 (2007)ADSCrossRefGoogle Scholar
  22. Zhang, P., Yang, D.X., Zhao, J.L., et al.: Light-induced array of three-dimensional waveguides in Lithium Niobate by employing two-beam interference field. Chin. Phys. Lett. 21, 1558–1561 (2004)ADSCrossRefGoogle Scholar
  23. Zhang, P., Zhao, J., Xiao, F., Lou, C., Xu, J., Chen, Z.: Elliptical discrete solitons supported by enhanced photorefractive anisotropy. Opt. Express 16, 3865–3870 (2008)ADSCrossRefGoogle Scholar
  24. Zhang, P., Egger, R., Chen, Z.: Optical induction of three-dimensional photonic lattices and enhancement of discrete diffraction. Opt. Express 17, 13151–13156 (2009)ADSCrossRefGoogle Scholar
  25. Zhang, P., Efremidis, N.K., Miller, A., Hu, Y., Chen, Z.: Observation of coherent destruction of tunneling and unusual beam dynamics due to negative coupling in three-dimensional photonic lattices. Opt. Lett. 35, 3252–3254 (2010a)CrossRefGoogle Scholar
  26. Zhang, P., Liu, S., Lou, C., Xiao, F., Wang, X., Zhao, J., Xu, J., Chen, Z.: Incomplete Brillouin-zone spectra and controlled Bragg reflection with ionic-type photonic lattices. Phys. Rev. A 81, 041801 (2010b)ADSCrossRefGoogle Scholar
  27. Zhang, P., Lou, C., Liu, S., Zhao, J., Xu, J., Chen, Z.: Tuning of Bloch modes, diffraction, and refraction by two-dimensional lattice reconfiguration. Opt. Lett. 35, 892–894 (2010c)CrossRefGoogle Scholar
  28. Zhang, P., Efremidis, N.K., Miller, A., Ni, P., Chen, Z.: Reconfigurable 3D photonic lattices by optical induction for optical control of beam propagation. Appl. Phys. B 104, 553–560 (2011)ADSCrossRefGoogle Scholar
  29. Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274–276 (2012)ADSCrossRefGoogle Scholar
  30. Zhu, N., Liu, Z.H., Guo, R., Liu, S.M.: A method of easy fabrication of 2D light-induced nonlinear photonic lattices in self-defocusing \(\text{ LiNbO }_{3}\):Fe crystal. Opt. Mater. 30, 527–531 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Physics and ElectronicsShandong Normal UniversityJinanPeople’s Republic of China

Personalised recommendations