Optical and Quantum Electronics

, Volume 45, Issue 11, pp 1157–1165 | Cite as

1D atom localization via probe absorption spectrum in a four-level cascade-type atomic system



We present a simple scheme of atom localization in a subwavelength domain via manipulation of probe absorption spectrum in a four-level atomic system. Due to the joint quantum interference induced by the standing-wave and radio-frequency driving fields, the localization peak position and number as well as the conditional position probability can be controlled by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 1D atom localization.


Atom localization Probe absorption spectrum Four-level atomic system 



This work was supported by the National Natural Science Foundation of China (Grant No. 11205001).


  1. Ding, C.L., Li, J.H., Yang, X.X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)Google Scholar
  2. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)CrossRefGoogle Scholar
  3. Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser fields. Phys. Rev. A 81, 033809 (2010)ADSCrossRefGoogle Scholar
  4. Johnson, K.S., Thywissen, J.H., Dekker, N.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)ADSCrossRefGoogle Scholar
  5. Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum II. Phys. Rev. A 73, 023813 (2006)ADSCrossRefGoogle Scholar
  6. Kunze, S., Rempe, G., Wilkens, M.: Atomic-position measurement via internal-state encoding. Europhys. Lett. 27, 115–121 (1994)ADSCrossRefGoogle Scholar
  7. Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)ADSCrossRefGoogle Scholar
  8. Liu, C.P., Gong, S.Q., Cheng, D.C., Fan, X.J., Xu, Z.Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)ADSCrossRefGoogle Scholar
  9. Niu, Y.P., Gong, S.Q., Li, R.X., Xu, Z.Z., Liang, X.Y.: Giant Kerr nonlinearity induced by interacting dark resonance. Opt. Lett. 30, 3371–3373 (2005)ADSCrossRefGoogle Scholar
  10. Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)ADSCrossRefGoogle Scholar
  11. Phillips, W.D.: Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998)ADSCrossRefGoogle Scholar
  12. Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)Google Scholar
  13. Quadt, R., Collett, M., Walls, D.F.: Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 74, 351–354 (1995)ADSCrossRefGoogle Scholar
  14. Scully, M.O., Zubairry, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  15. Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)Google Scholar
  16. Wang, Z., Jiang, J.: Sub-half-wavelength atom localization via probe absorption spectrum in a four-level atomic system. Phys. Lett. A 374, 4853–4858 (2010)Google Scholar
  17. Wang, Z., Yu, B., Zhu, J., Cao, Z., Zhen, S., Wu, X., Xu, F.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. (New York) 327, 1132–1145 (2012a)Google Scholar
  18. Wang, Z., Yu, B., Xu, F., Zhen, S., Wu, X.: Efficient two-dimensional atom localization via spontaneous emission in a single decay channel. Appl. Phys. B 108, 479–486 (2012b)Google Scholar
  19. Wu, Y., Saldana, J., Zhu, Y.F.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)ADSCrossRefGoogle Scholar
  20. Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)ADSCrossRefGoogle Scholar
  21. Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)ADSCrossRefGoogle Scholar
  22. Wu, Y., Yang, X.X.: Electromagnetically induced transparency in V, and cascade type scheme beyond steady state analysis. Phys. Rev. A 71, 053805 (2005)ADSCrossRefGoogle Scholar
  23. Xu, J., Hu, X.M.: Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields. Phys. Rev. A 76, 013830 (2007)ADSCrossRefGoogle Scholar
  24. Yan, M., Rickey, E.G., Zhu, Y.: Electromagnetically induced transparency in cold rubidium atoms. J. Opt. Soc. Am. B 18, 1057–1062 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Physics and Electronic EngineeringNanjing Xiaozhuang UniversityNanjingChina
  2. 2.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina

Personalised recommendations