Advertisement

Optical and Quantum Electronics

, Volume 45, Issue 11, pp 1157–1165 | Cite as

1D atom localization via probe absorption spectrum in a four-level cascade-type atomic system

  • Xiao-Bing Xu
  • Shu-Long Gu
  • Zhi-Ping Wang
Article

Abstract

We present a simple scheme of atom localization in a subwavelength domain via manipulation of probe absorption spectrum in a four-level atomic system. Due to the joint quantum interference induced by the standing-wave and radio-frequency driving fields, the localization peak position and number as well as the conditional position probability can be controlled by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 1D atom localization.

Keywords

Atom localization Probe absorption spectrum Four-level atomic system 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11205001).

References

  1. Ding, C.L., Li, J.H., Yang, X.X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)Google Scholar
  2. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)CrossRefGoogle Scholar
  3. Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser fields. Phys. Rev. A 81, 033809 (2010)ADSCrossRefGoogle Scholar
  4. Johnson, K.S., Thywissen, J.H., Dekker, N.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)ADSCrossRefGoogle Scholar
  5. Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum II. Phys. Rev. A 73, 023813 (2006)ADSCrossRefGoogle Scholar
  6. Kunze, S., Rempe, G., Wilkens, M.: Atomic-position measurement via internal-state encoding. Europhys. Lett. 27, 115–121 (1994)ADSCrossRefGoogle Scholar
  7. Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)ADSCrossRefGoogle Scholar
  8. Liu, C.P., Gong, S.Q., Cheng, D.C., Fan, X.J., Xu, Z.Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)ADSCrossRefGoogle Scholar
  9. Niu, Y.P., Gong, S.Q., Li, R.X., Xu, Z.Z., Liang, X.Y.: Giant Kerr nonlinearity induced by interacting dark resonance. Opt. Lett. 30, 3371–3373 (2005)ADSCrossRefGoogle Scholar
  10. Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)ADSCrossRefGoogle Scholar
  11. Phillips, W.D.: Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998)ADSCrossRefGoogle Scholar
  12. Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)Google Scholar
  13. Quadt, R., Collett, M., Walls, D.F.: Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 74, 351–354 (1995)ADSCrossRefGoogle Scholar
  14. Scully, M.O., Zubairry, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  15. Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)Google Scholar
  16. Wang, Z., Jiang, J.: Sub-half-wavelength atom localization via probe absorption spectrum in a four-level atomic system. Phys. Lett. A 374, 4853–4858 (2010)Google Scholar
  17. Wang, Z., Yu, B., Zhu, J., Cao, Z., Zhen, S., Wu, X., Xu, F.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. (New York) 327, 1132–1145 (2012a)Google Scholar
  18. Wang, Z., Yu, B., Xu, F., Zhen, S., Wu, X.: Efficient two-dimensional atom localization via spontaneous emission in a single decay channel. Appl. Phys. B 108, 479–486 (2012b)Google Scholar
  19. Wu, Y., Saldana, J., Zhu, Y.F.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)ADSCrossRefGoogle Scholar
  20. Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)ADSCrossRefGoogle Scholar
  21. Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)ADSCrossRefGoogle Scholar
  22. Wu, Y., Yang, X.X.: Electromagnetically induced transparency in V, and cascade type scheme beyond steady state analysis. Phys. Rev. A 71, 053805 (2005)ADSCrossRefGoogle Scholar
  23. Xu, J., Hu, X.M.: Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields. Phys. Rev. A 76, 013830 (2007)ADSCrossRefGoogle Scholar
  24. Yan, M., Rickey, E.G., Zhu, Y.: Electromagnetically induced transparency in cold rubidium atoms. J. Opt. Soc. Am. B 18, 1057–1062 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Physics and Electronic EngineeringNanjing Xiaozhuang UniversityNanjingChina
  2. 2.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina

Personalised recommendations