Skip to main content
Log in

The slow light in the closed-packed face-centered cubic photonic crystal: characteristics and application design

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Using the plane wave expansion method, we calculated the energy band distribution of face-centered cubic (FCC) photonic crystals in the reciprocal lattice space. The influences of various dielectric constant materials on the properties of slow light are discussed. The results show that, in the close-packed hollow spherical FCC photonic crystal, the group velocity of light can be slow down to the velocity about \(10^{-4}c\). And the slow light effect tends to occur more strongly in the hollow spherical structure in comparison with the dielectric spherical structure. The possible applications of the slow light effect in the 3D photonic crystal are proposed for solar cells and optical communication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)

    Article  ADS  Google Scholar 

  • Chu, J.H., Voskoboynikov, O., Lee, C.P.: Slow light in photonic crystals. Microelectron. J. 36, 282–284 (2005)

    Article  Google Scholar 

  • Duché, D., Escoubas, L., Simon, J.J., Torchio, P., Vervisch, W.: Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells. Appl. Phys. Lett. 92, 193310-1–193310-3 (2008)

    Article  ADS  MATH  Google Scholar 

  • Gadenne, P., Yagil, Y., Deutscher, G.: Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition. J. Appl. Phys. 66, 3019–3025 (1989)

    Article  ADS  Google Scholar 

  • Galisteo-López, J.F., Galli, M., Balestreri, A., Patrini, M., Andreani, L.C., López, C.: Slow to superluminal light waves in thin 3D photonic crystals. Opt. Express 15, 15342–15350 (2007)

    Article  ADS  Google Scholar 

  • Grgić, J., Pedersen, J.G., Xiao, S., Mortensen, N.A.: Group index limitations in slow-light photonic crystals. Photonic. Nanostruct. 8, 56–61 (2010)

    Article  ADS  Google Scholar 

  • Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990)

    Article  ADS  Google Scholar 

  • Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H., Aizenberg, J.: Assembly of large-area, highly ordered, crack-free inverse opal films. PNAS 107, 10354–10359 (2010)

    Article  ADS  Google Scholar 

  • Ho, K.M., Chan, C.T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  ADS  Google Scholar 

  • Ko, D.H., Tumbleston, J.R., Zhang, L., Williams, S., DeSimone, J.M., Lopez, R., Samulski, E.T.: Photonic crystal geometry for organic solar cells. Nano Lett. 9, 2742–2746 (2009)

    Article  ADS  Google Scholar 

  • Kubo, S., Mori, D., Baba, T.: Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981–2983 (2007)

    Article  ADS  Google Scholar 

  • Lin, S.H., Hsu, K.Y., Yeh, P.: Experimental observation of the slowdown of optical beams by a volume-index grating in a photorefractive LiNbO\(_{3}\) crystal. Opt. Lett. 25, 1582–1584 (2000)

  • Lotfi, H., Granpayeh, N., Schulz, S.A.: Photonic crystal waveguides with ultra-low group velocity. Opt. Commun. 285, 2743–2745 (2012)

    Article  ADS  Google Scholar 

  • Mihi, A., Miguez, H.: Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. B 109, 15968–15976 (2005)

    Article  Google Scholar 

  • Podivilov, E., Sturman, B., Shumelyuk, A., Odoulov, S.: Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling. Phys. Rev. Lett. 91, 083902-1–083902-4 (2003)

    Google Scholar 

  • Rivas, J.G., Benet, A.F., Niehusmann, J., Bolivar, P.H., Kurz, H.: Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals. Phys. Rev. B 71, 155110 (2005)

    Article  ADS  Google Scholar 

  • Schulz, S.A., O’Faolain, L., Beggs, D.M., White, T.P., Melloni, A., Krauss, T.F.: Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12, 104004-1–104004-10 (2010)

    Article  ADS  Google Scholar 

  • Vlasov, Y.A., O’Boyle, M., Hamann, H.F., McNab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 60907021), and the Tianjin Natural Science Foundation (Grant No. 11JCYBJC00300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, MZ., Li, L., Zhang, XS. et al. The slow light in the closed-packed face-centered cubic photonic crystal: characteristics and application design. Opt Quant Electron 45, 1107–1113 (2013). https://doi.org/10.1007/s11082-013-9727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9727-8

Keywords

Navigation