Advertisement

Optical and Quantum Electronics

, Volume 45, Issue 10, pp 1107–1113 | Cite as

The slow light in the closed-packed face-centered cubic photonic crystal: characteristics and application design

  • Meng-Zhen Li
  • Lan Li
  • Xiao-Song Zhang
  • Jian-Ping Xu
Article
  • 151 Downloads

Abstract

Using the plane wave expansion method, we calculated the energy band distribution of face-centered cubic (FCC) photonic crystals in the reciprocal lattice space. The influences of various dielectric constant materials on the properties of slow light are discussed. The results show that, in the close-packed hollow spherical FCC photonic crystal, the group velocity of light can be slow down to the velocity about \(10^{-4}c\). And the slow light effect tends to occur more strongly in the hollow spherical structure in comparison with the dielectric spherical structure. The possible applications of the slow light effect in the 3D photonic crystal are proposed for solar cells and optical communication devices.

Keywords

Slow light Photonic crystal Face-centered cubic (FCC) 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 60907021), and the Tianjin Natural Science Foundation (Grant No. 11JCYBJC00300).

References

  1. Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)ADSCrossRefGoogle Scholar
  2. Chu, J.H., Voskoboynikov, O., Lee, C.P.: Slow light in photonic crystals. Microelectron. J. 36, 282–284 (2005)CrossRefGoogle Scholar
  3. Duché, D., Escoubas, L., Simon, J.J., Torchio, P., Vervisch, W.: Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells. Appl. Phys. Lett. 92, 193310-1–193310-3 (2008)ADSCrossRefMATHGoogle Scholar
  4. Gadenne, P., Yagil, Y., Deutscher, G.: Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition. J. Appl. Phys. 66, 3019–3025 (1989)ADSCrossRefGoogle Scholar
  5. Galisteo-López, J.F., Galli, M., Balestreri, A., Patrini, M., Andreani, L.C., López, C.: Slow to superluminal light waves in thin 3D photonic crystals. Opt. Express 15, 15342–15350 (2007)ADSCrossRefGoogle Scholar
  6. Grgić, J., Pedersen, J.G., Xiao, S., Mortensen, N.A.: Group index limitations in slow-light photonic crystals. Photonic. Nanostruct. 8, 56–61 (2010)ADSCrossRefGoogle Scholar
  7. Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990)ADSCrossRefGoogle Scholar
  8. Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H., Aizenberg, J.: Assembly of large-area, highly ordered, crack-free inverse opal films. PNAS 107, 10354–10359 (2010)ADSCrossRefGoogle Scholar
  9. Ho, K.M., Chan, C.T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)ADSCrossRefGoogle Scholar
  10. Ko, D.H., Tumbleston, J.R., Zhang, L., Williams, S., DeSimone, J.M., Lopez, R., Samulski, E.T.: Photonic crystal geometry for organic solar cells. Nano Lett. 9, 2742–2746 (2009)ADSCrossRefGoogle Scholar
  11. Kubo, S., Mori, D., Baba, T.: Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981–2983 (2007)ADSCrossRefGoogle Scholar
  12. Lin, S.H., Hsu, K.Y., Yeh, P.: Experimental observation of the slowdown of optical beams by a volume-index grating in a photorefractive LiNbO\(_{3}\) crystal. Opt. Lett. 25, 1582–1584 (2000)Google Scholar
  13. Lotfi, H., Granpayeh, N., Schulz, S.A.: Photonic crystal waveguides with ultra-low group velocity. Opt. Commun. 285, 2743–2745 (2012)ADSCrossRefGoogle Scholar
  14. Mihi, A., Miguez, H.: Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. B 109, 15968–15976 (2005)CrossRefGoogle Scholar
  15. Podivilov, E., Sturman, B., Shumelyuk, A., Odoulov, S.: Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling. Phys. Rev. Lett. 91, 083902-1–083902-4 (2003)Google Scholar
  16. Rivas, J.G., Benet, A.F., Niehusmann, J., Bolivar, P.H., Kurz, H.: Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals. Phys. Rev. B 71, 155110 (2005)ADSCrossRefGoogle Scholar
  17. Schulz, S.A., O’Faolain, L., Beggs, D.M., White, T.P., Melloni, A., Krauss, T.F.: Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12, 104004-1–104004-10 (2010)ADSCrossRefGoogle Scholar
  18. Vlasov, Y.A., O’Boyle, M., Hamann, H.F., McNab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Meng-Zhen Li
    • 1
    • 2
  • Lan Li
    • 1
  • Xiao-Song Zhang
    • 1
  • Jian-Ping Xu
    • 1
  1. 1.Institute of Material PhysicsTianjin University of TechnologyTianjinChina
  2. 2.School of Electronics Information EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations