Skip to main content
Log in

Investigation on an ultra-compact \(1\times 2\) polymer electro-optic switch using cross-coupling \(2N+1\) vertical-turning serial-coupled microrings

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Generic model and thorough investigation are proposed for a novel \(1\times 2\) polymer electro-optic (EO) switch based on one-group \(2N+1\) vertical-turning serial-coupled microrings. For realizing boxlike flat spectrum as well as low crosstalk and insertion loss, resonance order and coupling gaps are optimized. The MRR switches with \(N \ge 1\) reveal favorable boxlike spectrum as when compared with the simple device with only one microring (\(N = 0\)). For obtaining \(<-30\,\text{ dB }\) crosstalk under through-state, the dependency of switching voltage on \(N\) is determined as \(7.19 \times \text{ exp }(-N/0.72) + 1.72\,(\text{ V })\). Under the operation voltages of 0 V (drop state) and the predicted switching voltages (through state), the device performances are analyzed, and \(1 \le N \le 10\) is required for dropping the insertion loss (drop state) below 10 dB. The crosstalk of the ten devices (\(N = 1-10\)) are \(< -19.5\,\text{ dB }\) under drop state and \(< -28.7\,\text{ dB }\) under through state, and the insertion losses of the devices (\(N = 1-10\)) are \(< 9.715\,\text{ dB }\) under drop state and \(< 1.573\,\text{ dB }\) under through state. The device also has ultra-compact footprint size of only 0.33–1.06 mm, which is only 1/10–1/3 of those of our previously reported polymer EO switches based on directional coupler or Mach–Zehnder interferometer structures. Therefore, the proposed device is capable of highly integration onto optical networks-on-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cabanetos, C., Blart, E., Pellegrin, Y., Montembault, V., Fontaine, L., Adamietz, F., Rodriguez, V., Odobel, F.: Simpler and more efficient strategy to stabilize the chromophore orientation in electro-optic polymers with copper-free thermal Huisgen reaction. Polymer 52, 2286–2294 (2011)

    Article  Google Scholar 

  • Chen, C., Zhang, F., Wang, H., Sun, X., Wang, F., Zhang, D.: UV curable electro-optic polymer switch based on direct photo definition technique. IEEE J. Quantum Electron. 47, 959–964 (2011)

    Article  Google Scholar 

  • Driscoll, W.G., Vaughan, W.: Handbook of Optics, p. 7. McGraw-Hill, New York (1978)

    Google Scholar 

  • Emelett, S.J., Soref, R.A.: Synthesis of dual-microring-resonator crossconnect filters. Opt. Express 13, 4439–4456 (2005)

    Article  ADS  Google Scholar 

  • Enami, Y., Mathine, D., DeRose, C.T., Norwood, R.A., Luo, J., Jen, A.K.Y., Peyghambarian, N.: Hybrid electrooptic polymer/sol-gel waveguide directional coupler switches. Appl. Phys. Lett. 94, 213513-1–213513-3 (2009)

    Article  ADS  Google Scholar 

  • Huang, S., Luo, J.D., Yip, H.L., Ayazi, A., Zhou, X.H., Gould, M., Chen, A.T., Baehr-Jones, T., Hochberg, M., Alex, A.K.Y.: Electro-optical materials: efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals. Adv. Mater. 24, OP1–OP6 (2012)

    Article  Google Scholar 

  • Li, C., Luo, X., Poon, A.W.: Dual-microring-resonator electro-optic logic switches on a silicon chip. Semicond. Sci. Technol. 23, 064010-1–064010-6 (2008)

    ADS  Google Scholar 

  • Lorenz, A., Kitzerow, H.S.: Efficient electro-optic switching in a photonic liquid crystal fiber. Appl. Phys. Lett. 98, 241106-1–241106-3 (2011)

    Article  ADS  Google Scholar 

  • Melloni, A., Carniel, F., Costa, R., Martinelli, M.: Determination of bend mode characteristics in dielectric waveguides. J. Lightwave Technol. 19, 571–577 (2001)

    Article  ADS  Google Scholar 

  • Pitois, C., Vukmirovic, S., Hult, A., Wiesmann, D., Robertsson, M.: Low-loss passive optical waveguides based on photo-sensitive poly(pentafluorostyrene-co-glycidyl methacrylate). Macromolecules 32, 2903–2909 (1999)

    Article  ADS  Google Scholar 

  • Simos, H., Bogris, A., Raptis, N., Syvridis, D.: Dynamic properties of a WDM switching module based on active microring resonators. IEEE Photon. Technol. Lett. 22, 206–208 (2010)

    Article  ADS  Google Scholar 

  • Takahashi, K., Kanamori, Y., Kokubun, Y., Hane, K.: A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electronicstatic actuator. Opt. Express 16, 14421–14428 (2008)

    Article  ADS  Google Scholar 

  • Tsuboi, Y., Tsuboi, K., Michinobu, T.: Simultaneous formation of donor-acceptor chromophores and cross-linking for electro-optic polymer materials. J. Photopolym. Sci. Technol. 24, 305–309 (2011)

    Article  Google Scholar 

  • Van Campenhout, J., Green, W.M.J., Assefa, S., Vlasov, Y.A.: Drive-noise-tolerant broadband silicon electro-optic switch. Opt. Express 19, 11568–11577 (2011)

    Article  ADS  Google Scholar 

  • Xia, F., Rooks, M., Sekaric, L., Vlasov, Y.: Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007)

    Article  ADS  Google Scholar 

  • Xiao, S., Khan, M.H., Shen, H., Qi, M.H.: A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt. Express 15, 14765–14771 (2012)

    Article  ADS  Google Scholar 

  • Xu, G.Y., Liu, Z.F., Ma, J., Liu, B.Y., Ho, S.T., Wang, L., Zhu, P.W., Marks, T.J., Luo, J.D., Jen, A.K.Y.: Organic electro-optic modulator using transparent conducting oxides as electrodes. Opt. Express 13, 7380–7385 (2005)

    Article  ADS  Google Scholar 

  • Xu, Q., Schmidt, B., Shakya, J., Lipson, M.: Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express 14, 9430–9435 (2006)

    ADS  Google Scholar 

  • Xu, L., Zhang, W.J., Li, Q., Chan, J., Lipson, M., Bergman, K.: 40-Gb/s DPSK data transmission through a silicon microring switch. IEEE Photon. Technol. Lett. 24, 473–475 (2012)

    Article  ADS  Google Scholar 

  • Yan, X., Ma, C.S., Zheng, C.T., Wang, X.Y., Zhang, D.M.: Analysis of polymer electro-optic microring resonator switches. Opt. Laser Technol. 42, 526–530 (2010)

    Article  ADS  Google Scholar 

  • Yan, A.M., Zhi, Y.N., Sun, J.F., Liu, R.: Design and experiment of a large aperture digital beam deflector based on electro-optic crystal switch array. Appl. Phys. B-Laser. Opt. 107, 421–427 (2012)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Yan, X., Wang, X.Y., Zhang, D.M.: Analysis of response characteristics for polymer directional coupler electro-optic switches. Opt. Commun. 281, 5998–6005 (2008a)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Yan, X., Wang, X.Y., Zhang, D.M.: Simulation and optimization of a polymer directional coupler electro-optic switch with push-pull electrodes. Opt. Commun. 281, 3695–3702 (2008b)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Yan, X., Wang, X.Y., Zhang, D.M.: Design of integrated \(1\times 2,\,1\times 4\) low driving voltage polymer electro-optic switches based onY-fed directional couplers. J. Mod. Opt. 56, 615–622 (2009)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Yan, X., Wang, X.Y., Zhang, D.M.: Optimal design and analysis of a high-speed, low-voltage polymer Mach–Zehnder interferometer electro-optic switch. Opt. Laser Technol. 42, 457–464 (2010)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Cui, Z.C., Yan, X., Zhang, D.M., Tian, C.W.: Investigation on push-pull polymer Mach–Zehnder interferometer electro-optic switches using improved 3-D mode propagation analysis method. Opt. Quantum Electron. 42, 327–346 (2011)

    Article  Google Scholar 

  • Zhu, X.Z., Li, Q., Chan, J., Ahsan, A., Lira, H.L.R., Lipson, M., Bergman, K.: \(4\times 44\) Gb/s packet-level switching in a second-order microring switch. IEEE Photon. Technol. Lett. 24, 1555–1557 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the National Natural Science Foundation Council of China (Nos. 61107021, 61177027 and 61077041), the Ministry of Education of China (Nos. 20110061120052 and 20120061130008), the China Postdoctoral Science Foundation funded project (Nos. 20110491299 and 2012T50297), the Special Funds of Basic Science and Technology of Jilin University (No. 201103076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Tao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, QQ., Zheng, CT., Huang, XL. et al. Investigation on an ultra-compact \(1\times 2\) polymer electro-optic switch using cross-coupling \(2N+1\) vertical-turning serial-coupled microrings. Opt Quant Electron 45, 999–1015 (2013). https://doi.org/10.1007/s11082-013-9721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9721-1

Keywords

Navigation