Advertisement

Optical and Quantum Electronics

, Volume 45, Issue 7, pp 747–753 | Cite as

A dual-band polarization insensitive metamaterial absorber with split ring resonator

  • B. Ni
  • X. S. Chen
  • L. J. Huang
  • J. Y. Ding
  • G. H. Li
  • W. Lu
Article

Abstract

A dual-band polarization insensitive absorber has been proposed . Unlike the previous dual band absorber composed of composite structures, only one square metal ring with a slit at the middle of each side can be used to achieve the dual-band absorption. The calculated results show two distinct absorption peaks of 0.96 at 10 GHz and 0.99 at 20 GHz. In addition, the positions of the two peaks are strongly influenced by the width of the slit (g). More importantly, the absorptions of the two peaks keep higher than 0.9 while g changing. The dual-band absorber may have many potential applications in scientific and technological areas because of its excellent absorption characteristics and concise structure.

Keywords

Metamaterial absorber Split ring resonator Numerical simulation 

Notes

Acknowledgments

This work was supported in part by the State Key Program for Basic Research of China grants (2011CB922004, 2013CB632705); the National Natural Science Foundation of China grants (10990104, 60976092 and 61290301); the Fund of Shanghai Science and Technology Foundation grants (10JC1416100).

References

  1. Diem, M., Koschny, T., Soukoulis, C.M.: Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 79, 033101 (2009)ADSCrossRefGoogle Scholar
  2. EastFDTD, DONGJUN Science and Technology Co. ChinaGoogle Scholar
  3. Gu, Y., Kwak, E.S., Lensch, J.L., Allen, J.E., Odom, T.W., Lauhon, L.J.: Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005)ADSCrossRefGoogle Scholar
  4. Hao, J.M., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010)ADSCrossRefGoogle Scholar
  5. He, M.D., Liu, J.Q., Gong, Z.Q., Luo, Y.F., Chen, X.S.: Light transmission through metal films perforated with arrays of asymmetric cross-shaped hole. Solid State Commun. 150, 104–108 (2010)ADSCrossRefGoogle Scholar
  6. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  7. Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)ADSCrossRefGoogle Scholar
  8. Liu, X.L., Starr, T., Starr, A.F., Padilla, W.J.: Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010)ADSCrossRefGoogle Scholar
  9. Ma, Y., Chen, Q., Grant, J., Saha, S.C., Khalid, A., Cumming, D.R.S.: A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36(6), 945–947 (2011)ADSCrossRefGoogle Scholar
  10. Mason, J.A., Smith, S., Wasserman, D.: Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl. Phys. Lett. 98, 241105 (2011)ADSCrossRefGoogle Scholar
  11. Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at Terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006)ADSCrossRefGoogle Scholar
  12. Padilla, W.J., Aronsson, M.T., Highstrete, C., Mark Lee, M., Taylor, A.J., Averitt, R.D.: Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007)ADSCrossRefGoogle Scholar
  13. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)ADSCrossRefGoogle Scholar
  14. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)ADSCrossRefGoogle Scholar
  15. Shen, X.P., Cui, T.J., Zhao, J.M.M., Ma, H.F., Jiang, W.X., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19(10), 9401–9407 (2011)ADSCrossRefGoogle Scholar
  16. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., chultz, S.S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)ADSCrossRefGoogle Scholar
  17. Tao, H., Bingham, C.M., Pilon, D., Fan, K., Strikwerda, A.C., Shrekenhamer, D., Padilla, W.J., Zhang, X., Averitt, R.D.: A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43, 225102 (2010)ADSCrossRefGoogle Scholar
  18. Wang, Y., Sun, T., Paudel, T., Zhang, Y., Ren, Z., Kempa, K.: Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano. Lett. 12, 440–445 (2012)ADSCrossRefGoogle Scholar
  19. Wen, Q.Y., Zhang, H.W., Xie, Y.S., Yang, Q.H., Liu, Y.L.: Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009)ADSCrossRefGoogle Scholar
  20. Wu, C.H., Neuner III, B., Shvets, G.: Large-area wide-angle spectrally selective plasmonic absorber. Phys. Rev. B. 84, 075102 (2011)ADSCrossRefGoogle Scholar
  21. Ye, Y.Q., Jin, Y., He, S.L.: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B. 3(27), 498–504 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • B. Ni
    • 1
  • X. S. Chen
    • 1
  • L. J. Huang
    • 1
  • J. Y. Ding
    • 1
  • G. H. Li
    • 1
  • W. Lu
    • 1
  1. 1.National Lab for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations