Advertisement

Optical and Quantum Electronics

, Volume 45, Issue 7, pp 687–692 | Cite as

The photocurrent of resonant tunneling diode controlled by the charging effects of quantum dots

  • D. M. Zhou
  • Q. C. Weng
  • W. P. Wang
  • N. Li
  • B. Zhang
  • W. D. Hu
  • X. S. Chen
  • W. Lu
  • W. X. Wang
  • H. Chen
Article

Abstract

We experimentally studied the photocurrent of AlAs/GaAs/AlAs double barrier resonant tunneling diode (RTD), which is composed of an InAs layer of self-assembled quantum-dots on top of AlAs barrier layer. It is found that the charging InAs quantum dots can effectively modulate the carrier transport properties of the RTD. Moreover, we also found that the resonant tunneling current through a single energy level of an individual quantum dot is extremely sensitive to the photo-excited holes bound nearby the dot, and the presence of the holes lowers the electrostatic energy of the quantum dot state. In addition, it is also observed that the photocurrent behaves like step way with the individual photon pulse excitation when the illumination is low enough. The experiment results well demonstrated the quantum amplified characteristics of the device.

Keywords

Quantum dot Resonant tunneling diode Single photon detection 

Notes

Acknowledgments

This work was supported in part by the State Key Program for Basic Research of China (2006CB921507), the National Natural Science Foundation of China (10725148, 10734090, 10990104, 11274331, 61006090, and 10874196), Key Fund of Shanghai Science and Technology Foundation (09dz2202200, 10JC1416100, and 10510704700), and Shanghai Rising-Star Program.

References

  1. An, Z., Ueda, T., Komoyama, S., Hirakawa, K.: Metastable excited states of a closed quantum dot with high sensitivity to infrared photons. Phys. Rev. B 75, 085417 (2007)ADSCrossRefGoogle Scholar
  2. Beton, P.H., Wang, J., Mori, N., Eaves, L., Main, P.C., Foster, T.J., Henini, M.: Measuring the probability density of quantum defined states. Phys. Rev. Lett. 75, 1996–1999 (1995)ADSCrossRefGoogle Scholar
  3. Blakesley, J.C., See, P., Shields, A.J., Kardynal, B.E., Atkinson, P., Farrer, I., Ritchie, D.A.: Efficient single photon detection by quantum dot resonant tunneling diodes. Phys. Rev. Lett. 94, 067401 (2005)ADSCrossRefGoogle Scholar
  4. Brown, E.R., Sollner, T.C.L.G., Perker, C.D., Goodhue, W.D., Chen, C.L.: Oscillation up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl. Phys. Lett. 55, 1777–1779 (1989)ADSCrossRefGoogle Scholar
  5. Buller, G.S., Collins, R.J.: Single-photon generation and detection. Meas. Sci. Technol. 21, 012202 (2010)CrossRefGoogle Scholar
  6. Cahay, M., McLennan, M., Datta, S., Lundstorm, M.S.: Importance of space-charge effects in resonant tunneling devices. Appl. Phys. Lett. 50, 612–614 (1987)ADSCrossRefGoogle Scholar
  7. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101–071125 (2011)ADSCrossRefGoogle Scholar
  8. Fu, Y., Willander, M.: Charging accumulation and band edge in the double barrier tunneling structure. J. Appl. Phys. 71, 3877–3882 (1992)ADSCrossRefGoogle Scholar
  9. Gnsen, E.J., Rowe, M.A., Greene, M.B., Rosenberg, D., Harvey, T.E., Su, M.Y., Hadfield, R.H., Nam, S.W., Mirin, R.P.: Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nat. Photonics 1, 585–588 (2007)ADSCrossRefGoogle Scholar
  10. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)ADSCrossRefGoogle Scholar
  11. Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009)ADSCrossRefGoogle Scholar
  12. Hees, S.S., Kardynal, B.E., Shields, A.J., Farrer, I., Ritchie, D.A.: Capture dynamics of hot electrons on quantum dots in RTDs studied by noise measurement. New J. Phys. 10, 013027 (2008)ADSCrossRefGoogle Scholar
  13. Hou, Y., Wang, W.P., Li, N., Lu, W., Fu, Y.: Effects of series and parallel resistances on the current–voltage characteristics of small-area air-bridge resonant tunneling diode. J. Appl. Phys. 104, 074508 (2008a)ADSCrossRefGoogle Scholar
  14. Hou, Y., Wang, W.P., Li, N., Lu, W., Fu, Y.: Carrier wave-packet transport under the influence of charged quantum dot in small-area resonant tunneling diode. Appl. Phys. Lett. 93, 132108 (2008b)ADSCrossRefGoogle Scholar
  15. Kardnal, B.E., Hees, S.S., Shields, A.J.: Photon number resolving detector based on a quantum dot field effect transistor. Appl. Phys. Lett. 90, 181114 (2007)ADSCrossRefGoogle Scholar
  16. Kim, J., Takeuchi, S., Yamamoto, Y., Hogue, H.H.: Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902 (1999)ADSCrossRefGoogle Scholar
  17. Li, H.W., Kardynal, B.E., See, P., Shields, A.J., Simmonds, P., Beere, H.E., Ritchie, D.A.: Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection. Appl. Phys. Lett. 91, 073516 (2007)ADSCrossRefGoogle Scholar
  18. Lilin, X., Wu, E.: High-speed InGaAs/InP-based single-photon detector with high efficiency. Appl. Phys. Lett. 94, 161106 (2009)ADSCrossRefGoogle Scholar
  19. Ramond, T.M., Hollberg, L., Juodawlkis, P.W., Calawa, S.D.: Low-noise optical injection locking of a resonant tunneling diode to a stable optical frequency comb. Appl. Phys. Lett. 90, 171124 (2007)ADSCrossRefGoogle Scholar
  20. Rowe, M.A., Gansen, E.J., Greene, M., Hadifield, R.H., Harvey, T.E., Su, M.Y., Nam, S.W., Mirin, R.P.: Single-photon detection using q quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006)ADSCrossRefGoogle Scholar
  21. Schettini, V., Polyakov, S.V., Degiovanni, I.P., Brida, G., Castelletto, S., Migdall, A.L.: Implementing a multiplexed system of detectors for higher photon counting rates. IEEE J. Sel. Top. Quantum Electron 13, 978–983 (2007)CrossRefGoogle Scholar
  22. Shields, A.J., O’Sullivan, M.P., Farrer, I., Ritchie, D.A.: Detection of single photons using a field-effect transistor gated by a layer of quantum dots. Appl. Phys. Lett. 76, 3673 (2000)ADSCrossRefGoogle Scholar
  23. Sollner, T.C.L.G., Brown, E.R., Goodhue, W.D., Correa, C.A.: Harmonic multiplication using resonant tunneling. J. Appl. Phys. 64, 4248–4250 (1988)ADSCrossRefGoogle Scholar
  24. Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)ADSCrossRefGoogle Scholar
  25. Vdovin, E.E., Makarovsky, O., Patane, A., Eaves, L., Khanin, Y.N.: Sensitive detection of photoecxited carriers by resonant tunneling through a single quantum dot. Phys. Rev. B 79, 193311 (2009)ADSCrossRefGoogle Scholar
  26. Wang, W., Hou, Y., Xiong, D., Li, N.: High photoexcited carrier multiplication by charged InAs dots in AlAs/GaAs/AlAs resonant tunneling diode. Appl. Phys. Lett. 92, 023508 (2008)ADSCrossRefGoogle Scholar
  27. Wang, W.P., Hou, Y., Li, N., Lu, W., Wang, W.X., Chen, H.: Field effect enhanced quantum dot resonant tunneling diode for high dynamic range light detection. Appl. Phys. Lett. 94, 093511 (2009)ADSCrossRefGoogle Scholar
  28. You, K., Kazama, H., Kitashou, Y., Nakano, T.: Bistability of resonant diode structure with InAs quantum dots. Phys. Stat. Sol. (b) 204, 378–381 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. M. Zhou
    • 1
    • 2
  • Q. C. Weng
    • 2
  • W. P. Wang
    • 2
  • N. Li
    • 2
  • B. Zhang
    • 2
  • W. D. Hu
    • 2
  • X. S. Chen
    • 2
  • W. Lu
    • 2
  • W. X. Wang
    • 3
  • H. Chen
    • 3
  1. 1.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  2. 2.National Lab for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations