Optical and Quantum Electronics

, Volume 45, Issue 3, pp 221–232 | Cite as

Characterization of optical properties of optical polymers

  • N. G. Sultanova
  • S. N. Kasarova
  • I. D. Nikolov


Possible applications of polymer materials in optical systems and devices are defined mainly by their optical properties in terms of refractive indices, transmission, dispersion and thermo-optic coefficients. We have examined more than twenty types of optical plastics including basic, commercial and some new development materials. Detailed measured refractometric data and transmission spectra in the visible and near infrared regions are presented. Variation of refractive indices with temperature is considered to obtain the thermo-optic coefficients. Discussion on dispersion of studied optical polymers and comparison to glass is included on the base of a number of dispersive characteristics and curves.


Optical polymers Refractive index Dispersion Thermo-optic coefficients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Doushkina V.: Advantages of polymer and hybrid glass-polymer optics. Photon. Spectra 4, 54–58 (2010)Google Scholar
  2. Doushkina V.: Hybrid glass-polymer optics for IR applications. Photon. Spectra 4, 64–67 (2011)ADSGoogle Scholar
  3. Gorachand, G.: Handbook of thermo-optic coefficients of optical materials with applications. In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids, p. 115 Academic Press, San Diego (1998)Google Scholar
  4. Horne D.F.: Optical Production Technology. Adam Hilger, Bristol (1983)Google Scholar
  5. HOYA Corporation USA,
  6. Kasarova S., Sultanova N., Ivanov C., Nikolov I.: Analysis of the dispersion of optical plastic materials. Opt. Mater. 29, 1481–1490 (2007)ADSCrossRefGoogle Scholar
  7. Kasarova S., Sultanova N., Petrova T., Dragostinova V., Nikolov I.: Refractive characteristics of thin polymer films. J. Optoelectron. Adv. Mater. 11, 1440–1443 (2009)Google Scholar
  8. Kasarova S., Sultanova N., Petrova T., Dragostinova V., Nikolov I.: Optical properties of thin polymer films. Proc. SPIE 7501, 75010P (2009)ADSCrossRefGoogle Scholar
  9. Longhurst R.S.: Geometrical and Physical Optics. Longman Scientific, London (1973)Google Scholar
  10. Meister D., Sheedy J.: Introduction to Ophthalmic Optics, p. 109. Carl Zeiss Vision, San Diego (2008)Google Scholar
  11. Menendez J., Erismann F., Gauvin M.: The advantages of plastic optical components. Opt. Photon. News 10, 28–30 (1999)ADSCrossRefGoogle Scholar
  12. MITSUI Chemicals, Inc.,
  13. Nikolov I., Sultanova N., Kasarova S.: Laser measurements of optical plastics. Proc. SPIE 5830, 511–515 (2005)ADSCrossRefGoogle Scholar
  14. OHARA Corporation,
  15. Sainov S., Dushkina N.: Simple laser microrefractometer. Appl. Opt. 29, 1406–1408 (1990)ADSCrossRefGoogle Scholar
  16. SCHOTT Glass Technologies,
  17. Smith D.Y., Inokuti M., Karstens W.: Cauchy’s dispersion equation reconsidered: dispersion in silicate glasses. Radiat. Eff. Defects Solids 157, 823–828 (2002)ADSCrossRefGoogle Scholar
  18. Steeneken S.F., Buma A., Gieskes W.: Changes in transmission characteristics of polymethylmethacrylate and cellulose-(III) acetate during exposure to ultraviolet-light. Photochem. Photobiol. 61, 276–280 (1995)CrossRefGoogle Scholar
  19. Sultanova N., Kasarova S., Nikolov I.: . Acta Phys. Pol. A 116, 585–587 (2009)ADSGoogle Scholar
  20. Sultanova N., Nikolov I., Ivanov C.: Measuring the refractometric characteristics of optical plastics. Opt. Quant. Electron. 35, 21–34 (2003)CrossRefGoogle Scholar
  21. Tolley P.: Polymer optics gain respect. Photon. Spectra 10, 76–79 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • N. G. Sultanova
    • 1
  • S. N. Kasarova
    • 1
  • I. D. Nikolov
    • 2
  1. 1.Department of PhysicsBourgas UniversityBurgasBulgaria
  2. 2.Department of Optics and Spectroscopy, Faculty of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations