Optical and Quantum Electronics

, Volume 45, Issue 2, pp 127–134 | Cite as

Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission

  • Baile Chen
  • A. L. HolmesJr.


Optical gain performance of InP based “W” structure with InGaAs(N)/GaAsSb type-II quantum wells are investigated theoretically. The band structure was calculated by using k.p model, taking into account the conduction band mixing with N resonant band, valence band mixing, as well as strain effect. Our studies show that these type-II quantum wells are suitable for mid-infrared (2–4 μm) operation at room temperature.


Mid-wavelength infrared (MWIR) Dilute nitride InGaAsN GaAsSb Type-II quantum well Optical gain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belenky G., Shterengas L., Kipshidze G., Hosoda T.: Type-I diode lasers for spectral region above 3 μm. IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011)CrossRefGoogle Scholar
  2. Böhm G., Grau M., Dier O., Windhorn K., Rönneberg E., Rosskopf J., Shau R., Meyer R., Ortsiefer M., Amann M.C.J.: Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm. Cryst. Growth 301, 941–944 (2007)ADSCrossRefGoogle Scholar
  3. Chang C.-S., Chuang S.L.: Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE J. Sel. Top. Quantum Electron. I(2), 218–229 (1995)Google Scholar
  4. Hu J., Xu J.A., Stotz H., Watkins S.P., Curzon A.E., Thewalt M.L.W., Matine N., Bolognesi C.R.: Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 73, 2781–2799 (1998)CrossRefGoogle Scholar
  5. Huang J.Y.T., Mawst L.J., Kuech T.F., Song X., Babcock S.E., Kim C.S., Vurgaftman I., Meyer J.R., Holmes A.L. Jr: Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission. J. Phys. D Appl. Phys. 42, 025108 (2009)ADSCrossRefGoogle Scholar
  6. Mawst L.J., Huang J.Y.-T., Xu D.P., Yeh J.-Y., Tsvid G., Kuech T.F., Tansu N.: MOCVD-grown dilute nitride type II quantum wells. IEEE J. Sel. Top. Quantum Electron. 14(4), 979–991 (2008)CrossRefGoogle Scholar
  7. Pan C.-H., Chang C.-H., Lee C.-P.: Room temperature optically pumped 2.56-μm lasers with “W” type InGaAs/GaAsSb quantum wells on InP substrates. IEEE Photonics Technol. Lett. 24(13), 1145–1147 (2012)ADSCrossRefGoogle Scholar
  8. Rothman L.: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)ADSCrossRefGoogle Scholar
  9. Semtsiv M.P., Wienold M., Dressler S., Masselink W.T., Fedorov G., Smirnov D.: Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser. Appl. Phys. Lett. 93, 071109 (2008)ADSCrossRefGoogle Scholar
  10. Shan W., Walukiewicz W., AgerIII J.W., Haller E.E., Geisz J.F., Friedman D.J., Olson J.M., Kurtz S.R.: Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82, 1221 (1999)ADSCrossRefGoogle Scholar
  11. Sprengel S., Andrejew A., Vizbaras K., Gruendl T., Geiger K., Boehm G., Grasse C., Amann M.-C.: Type-II InP-based lasers emitting at 2.55 μm. Appl. Phys. Lett. 100, 041109 (2012)ADSCrossRefGoogle Scholar
  12. Tansu N., Kirsch N.J., Mawst L.J.: Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers. Appl. Phys. Lett. 81, 2523–2525 (2002)ADSCrossRefGoogle Scholar
  13. Vurgaftman I., Meyer J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94(6), 3675–3696 (2003)ADSCrossRefGoogle Scholar
  14. Vurgaftman I., Meyer J.R., Ram-Mohan L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)ADSCrossRefGoogle Scholar
  15. Yeh J.-Y., Mawst L.J., Khandekar A.A., Kuech T.F., Vurgaftman I., Meyer J.R., Tansu N.: Long wavelength emission of InGaAsN/GaAsSb type II “W” quantum wells. Appl. Phys. Lett. 88, 051115 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations