Advertisement

Optical and Quantum Electronics

, Volume 46, Issue 6, pp 731–750 | Cite as

Best candidate materials for fast speed response and high transmission performance efficiency of acousto optic modulators

  • Ahmed Nabih Zaki Rashed
Article
  • 247 Downloads

Abstract

An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio frequency). They are used in lasers for quality switching, telecommunications for signal modulation, and in spectroscopy for frequency control. This paper has presented the best candidate selected acousto optic materials based AOM for upgrading speed response and transmission performance characteristics. These materials are common materials for acousto-optic devices such as silica glass (SiO2), tellurium dioxide TeO2), gallium phosphide, and gallium arsenide. As well as we have deeply investigated the important transmission characteristics of acousto optic modulators such as transmission performance efficiency, transmission bit rate, diffraction angle and efficiency, transient speed response, signal transmission quality, bit error rate and modulation bandwidth under wide range of the affecting parameters for different selected acousto optic materials to be the major of interest.

Keywords

Acousto optic materials Transmission characteristics Transmission bit rate Quality switching and Speed response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan K., Tang S.: High speed spectral domain optical coherence tomography using non uniform fast fourier transform. Biomed. Opt. Exp. 54(3), 1234–1245 (2010)Google Scholar
  2. Chen M., Zhou L., Hara T., Xiao Y., Leung V.C.M.: Advances in multimedia communications. Int. J. Commun. Syst. 24(10), 1243–1245 (2011)CrossRefGoogle Scholar
  3. Datta P.K., Mukhopadhyay S., Das S.K., Tartara L., Agnesi A., Degiorgio V.: Enhancement of stability and efficiency of a nonlinear mirror mode locked Nd: YVO4 oscillator by an active Q switch. Opt. Exp. 12(2), 4041–4046 (2004)ADSCrossRefGoogle Scholar
  4. Ferriai K., Laouari N., Bouaouadia N.: Acousto-optic method for liquids refractometry. Optica Applicata 41(1), 109–119 (2011)Google Scholar
  5. García G., Flores E., Píntle J.A., Italo C., Ernest C.: Acoustic detector all fiber optics using Sagnac interferometer as modulator of index changes of fiber high birefringence. Can. J. Electr. Electron. Eng. 2(1), 8–13 (2011)Google Scholar
  6. Genack A.Z.: Phase sensitive detection of emission and scattering by electro optic demodulation. J. Lumin. 32(2), 696–698 (2011)Google Scholar
  7. Goodman J.W.: Linear space variant optical data processing in optical information processing fundamentals. Appl. Phys. 48(3), 1324–1335 (2002)Google Scholar
  8. Johnson R.V.: Temporal response of the acousto optic modulator in the high scattering efficiency regime. Appl. Opt. 18(3), 903–907 (2005)ADSGoogle Scholar
  9. Kajiwara, K., He, Z., Hotate, K.: Dynamic range enhancement in reflectometry by synthesis of optical coherence function with half-wave intensity modulation, pp. 1091–1093. OFC conference, Tokyo, Japan (paper ID 51055709) (2011)Google Scholar
  10. Kim H.J., Song J.: Full-duplex WDM based ROF system using all-optical SSB frequency up conversion and wavelength re-use techniques. IEEE Trans. Microw. Theory Tech. 49(2), 1354–1362 (2010)Google Scholar
  11. Limpert J., Deguil-Robin N., Manek-Hönninger I., Salin F., Schreiber T., Liem A., Röser F., Zellmer H., Tünnermann A., Courjaoud A., Hönninger C., Mottay E.: High power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 30(3), 714–716 (2005)ADSCrossRefGoogle Scholar
  12. Mayden D.: Acousto optical pulse modulators. J. Quantum Electron. 6(1), 15–24 (2005)ADSCrossRefGoogle Scholar
  13. Mohamed A.E.-N.A., Sharshar H.A., Rashed A.N.Z., Hanafy S.A.S.: High transmission data rate of plastic optical fibers over silica optical fibers based optical links for short transmission ranges. Int. J. Comput. Sci. Telecommun. (IJCST) 2(6), 61–72 (2011a)Google Scholar
  14. Mohamed A.E.-N.A., Rashed A.N.Z., Hanafy S.A.S., Bendary A.I.M.: Electrooptic polymer modulators performance improvement with pulse code modulation scheme in modern optical communication networks. Int. J. Comput. Sci. Telecommun. (IJCST) 2(6), 30–39 (2011b)Google Scholar
  15. Mohammed A.E.-N.A., Rashed A.N.Z., Tabour M.S.F.: Transmission characteristics of radio over fiber (ROF) millimeter wave systems in local area optical communication networks. Int. J. Adv. Netw. Appl. 2(6), 876–886 (2011a)Google Scholar
  16. Mohammed A.E.-N.A., El-Halawany M.M.E., Rashed A.N.Z., Hanafy S.: High performance of plastic optical fibers within conventional amplification technique in advanced local area optical communication networks. Int. J. Multidiscip. Sci. Eng. (IJMSE) 2(2), 34–42 (2011b)Google Scholar
  17. Mohammed A.E.-N.A., El-Halawany M.M.E., Rashed A.N.Z., Eid M.M.: Optical add drop multiplexers with UW-DWDM technique in metro optical access communication networks. Int. J. Comput. Sci. Telecommun. (IJCST) 2(2), 5–13 (2011c)Google Scholar
  18. Mohammed A.E.-N.A., Metwae’e M., Rashed A.N.Z., Bendary A.I.M.: Recent progress of LiNbO 3 based electrooptic modulators with non return to zero (NRZ) coding in high speed photonic networks. Int. J. Multidiscip. Sci. Eng. (IJMSE) 2(4), 13–21 (2011d)Google Scholar
  19. Young Y., Yao E.: Design consideration for acousto-optic devices. Proc. IEEE 69(1), 54–64 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Electronics and Electrical Communications Engineering Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations