Advertisement

Optical and Quantum Electronics

, Volume 44, Issue 14, pp 635–648 | Cite as

Design of micro resonator quantum well intensity modulator

  • Yan Zhang
  • Brian Pile
  • Geoff W. Taylor
Article

Abstract

A compact rectangular resonator quantum well intensity modulator for operation in the wavelength band around 1 μm is described. The modulator is realized using InGaAs/GaAs modulation-doped quantum wells and operates on the principles of index change caused by blue shifts of the absorption edge. High efficiency 90° bends are used to form the resonator and to provide optimal coupling to the external waveguide. The benefits are to reduce loss, to relax the lithography requirements and to provide more flexible contact designs to the modulator. The characteristics of the modulator are analyzed using MATLAB and FDTD simulation tools with refractive index profiles based on measured absorption parameters. A model including parasitics is developed for HSPICE transient simulations and is run in the AGILENT ADS environment. The performance parameters are determined to be an extinction ratio of 10.4 dB, a bandwidth of 33 GHz, and a dc power less than 1 mW for device dimensions of 16 × 6 μm2.

Keywords

Quantum well modulator Blue shift Micro resonator Intensity modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu P.K.: Theory of Optical Processes in Semiconductors: Bulk and Microstructures. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  2. Byungchae, K., Yu-Chia, C., Dagli, N.: Compact ring resonators using conventional waveguides, etched beam splitters and total internal reflection mirrors. In: Proceedings of OFC, 22–26 March 2009, pp. 1–3 (2009)Google Scholar
  3. Dong P., Liao S., Feng D., Liang H., Zheng D., Shafiiha R., Kung C.-C., Qian W., Li G., Zheng X., Krishnamoorthy A.V., Asghari M.: Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 17(25), 22484–22490 (2009)ADSCrossRefGoogle Scholar
  4. Dong P., Shafiiha R., Liao S., Liang H., Feng N.-N., Feng D., Li G., Zheng X., Krishnamoorthy A.V., Asghari M.: Wavelength-tunable silicon microring modulator. Opt. Express 18(11), 10941–10946 (2010)ADSCrossRefGoogle Scholar
  5. Doo Gun K., Jae Hyuk S., Ozturk C., Jong Chang Y., Chung Y., Dagli N.: Total internal reflection mirror-based InGaAsP ring resonators integrated with optical amplifiers. Photon. Technol. Lett. IEEE 17(9), 1899–1901 (2005)ADSCrossRefGoogle Scholar
  6. Espinola R., Ahmad R., Pizzuto F., Steel M., Osgood R.: A study of high-index-contrast 90^ waveguide bend structures. Opt. Express 8(9), 517–528 (2001)ADSCrossRefGoogle Scholar
  7. Goossen K.W., Walker J.A., D’Asaro L.A., Hui S.P., Tseng B., Leibenguth R., Kossives D., Bacon D.D., Dahringer D., Chirovsky L.M.F., Lentine A.L., Miller D.A.B.: GaAs MQW modulators integrated with silicon CMOS. Photon. Technol. Lett. IEEE 7(4), 360–362 (1995)ADSCrossRefGoogle Scholar
  8. Green W.M., Rooks M.J., Sekaric L., Vlasov Y.A.: Ultra-compact, low RF power, 10 Gb/s siliconMach-Zehnder modulator. Opt. Express 15(25), 17106–17113 (2007)ADSCrossRefGoogle Scholar
  9. Hou H.Q., Cheng A.N., Wieder H.H., Chang W.S.C., Tu C.W.: Electroabsorption of InAsP/InP strained multiple quantum wells for 1.3 μm waveguide modulators. Appl. Phys. Lett. 63(13), 1833–1835 (1993)ADSCrossRefGoogle Scholar
  10. Kai-Jun C., Jian-Dong L., Yong-Zhen H., Yue-De Y., Jin-Long X., Yun D.: InGaAsP-InP square microlasers with a vertex output waveguide. Photon. Technol. Lett. IEEE 22(18), 1370–1372 (2010)ADSCrossRefGoogle Scholar
  11. Kimerling L.: Electronic-photonic integrated circuits on the CMOS platform. Proc. SPIE 6125(1), 612502 (2006)CrossRefGoogle Scholar
  12. Krishnamoorthy A.V., Goossen K.W., Jan W., Xuezhe Z., Ho R., Guoliang L., Rozier R., Liu F., Patil D., Lexau J., Schwetman H., Dazeng F., Asghari M., Pinguet T., Cunningham J.E.: Progress in low-power switched optical interconnects. Sel. Top. Quantum Electron. IEEE J. 17(2), 357–376 (2011)CrossRefGoogle Scholar
  13. Kudo K., Yashiki K., Sasaki T., Yokoyama Y., Hamamoto K., Morimoto T., Yamaguchi M.: 1.55-μm wavelength-selectable microarray DFB-LD’s with monolithically integrated MMI combiner, SOA, and EA-modulator. Photon. Technol. Lett. IEEE 12(3), 242–244 (2000)ADSCrossRefGoogle Scholar
  14. Lardenois S., Pascal D., Vivien L., Cassan E., Laval S., Orobtchouk R., Heitzmann M., Bouzaida N., Mollard L.: Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Opt. Lett. 28(13), 1150–1152 (2003)ADSCrossRefGoogle Scholar
  15. Li C., Zhou L., Poon A.W.: Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Opt. Express 15(8), 5069–5076 (2007)ADSCrossRefGoogle Scholar
  16. Liu A., Jones R., Liao L., Samara-Rubio D., Rubin D., Cohen O., Nicolaescu R., Paniccia M.: A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427(6975), 615–618 (2004)ADSCrossRefGoogle Scholar
  17. Liu J., Beals M., Pomerene A., Bernardis S., Sun R., Cheng J., Kimerling L.C., Michel J.: Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photon. 2(7), 433–437 (2008)CrossRefGoogle Scholar
  18. Liu J., Pan D., Jongthammanurak S., Wada K., Kimerling L.C., Michel J.: Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform. Opt. Express 15(2), 623–628 (2007)ADSCrossRefGoogle Scholar
  19. Manipatruni S., Preston K., Long C., Lipson M.: Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt. Express 18(17), 18235–18242 (2010)ADSCrossRefGoogle Scholar
  20. Manipatruni, S., Qianfan, X., Schmidt, B., Shakya, J., Lipson, M.: High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator. In: Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 21–25 Oct 2007, pp. 537–538 (2007)Google Scholar
  21. Miller D.A.B.: Optical interconnects to silicon. Sel. Top. Quantum Electron. IEEE J. 6(6), 1312–1317 (2000)ADSCrossRefGoogle Scholar
  22. Miyazaki Y., Tada H., Shin-ya T., Takagi K., Aoyagi T., Mitsui Y.: Small-chirp 40-Gbps electroabsorption modulator with novel tensile-strained asymmetric quantum-well absorption layer. Quantum Electron. IEEE J. 39(6), 813–819 (2003)ADSCrossRefGoogle Scholar
  23. O’Brien S., Shealy J.R., Wicks G.W.: Monolithic integration of an AlGaAs laser and an intracavity electroabsorption modulator using selective partial interdiffusion. Appl. Phys. Lett. 58(13), 1363 (1991)ADSCrossRefGoogle Scholar
  24. Pankove J.I.: Optical Processes in Semiconductors. Courier Dover Publications, New York (1971)Google Scholar
  25. Paul D.J.: 8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates. Phys. Rev. B 77(15), 155323 (2008)ADSCrossRefGoogle Scholar
  26. Qian Y., Kim S., Song J., Nordin G.P., Jiang J.: Compact and low loss silicon-on-insulator rib waveguide 90^ bend. Opt. Express 14(13), 6020–6028 (2006)ADSCrossRefGoogle Scholar
  27. Radosavljevic, M., Dewey, G., Fastenau, J.M., Kavalieros, J., Kotlyar, R., Chu-Kung, B., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Pan, L., Pillarisetty, R., Rachmady, W., Shah, U., Chau, R.: Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications. Paper presented at the Electron Devices Meeting (IEDM), 2010 IEEE International, 6–8 Dec (2010)Google Scholar
  28. Roth J.E., Fidaner O., Schaevitz R.K., Kuo Y.-H., Kamins T.I., Harris J.S., Miller D.A.B.: Optical modulator on silicon employing germanium quantum wells. Opt. Express 15(9), 5851–5859 (2007)ADSCrossRefGoogle Scholar
  29. Soref R.: The past, present, and future of silicon photonics. Sel. Top. Quantum Electron. IEEE J. 12(6), 1678–1687 (2006)CrossRefGoogle Scholar
  30. Soref R., Bennett B.: Electrooptical effects in silicon. Quantum Electron. IEEE J. 23(1), 123–129 (1987)ADSCrossRefGoogle Scholar
  31. Sysak M.N., Raring J.W., Barton J.S., Dummer M., Tauke-Pedretti A., Poulsen H.N., Blumenthal D.J., Coldren L.A.: Single-chip, widely-tunable 10 Gbit/s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver. Electron. Lett. 42(11), 657–658 (2006)CrossRefGoogle Scholar
  32. Taylor G.W., Vang T., Sargood S.K., Cooke P., Claisse P.: Demonstration of the heterostructure field-effect transistor as an optical modulator. Appl. Phys. Lett. 59(9), 1031–1033 (1991)ADSCrossRefGoogle Scholar
  33. Vang T.A., Taylor G.W., Evaldsson P.A., Cooke P.: Heterostructure field-effect transistor optical modulator in the InGaAs/AlGaAs material system. Appl. Phys. Lett. 61(20), 2464–2466 (1992)ADSCrossRefGoogle Scholar
  34. Watts, M.R., Trotter, D.C., Young, R.W., Lentine, A.L.: Ultralow power silicon microdisk modulators and switches. In: Group IV Photonics, 5th IEEE International Conference on, 17–19 Sept 2008, pp. 4–6 (2008)Google Scholar
  35. Xu Q., Fattal D., Beausoleil R.G.: Silicon microring resonators with 1.5 μm radius. Opt. Express 16(6), 4309–4315 (2008)ADSCrossRefGoogle Scholar
  36. Xu Q., Schmidt B., Pradhan S., Lipson M.: Micrometre-scale silicon electro-optic modulator. Nature 435(7040), 325–327 (2005)ADSCrossRefGoogle Scholar
  37. Xu Z., Wang C., Qi W., Yuan Z.: Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential. Opt. Lett. 35(5), 736–738 (2010)ADSCrossRefGoogle Scholar
  38. Yao J., Cai J., Opper H., Basilica R., Garber R., Taylor G.W.: Comparison of theory and experiment in a modified BICFET/HFET structure. Solid-State Electron. 53(9), 979–987 (2009)ADSCrossRefGoogle Scholar
  39. Yariv A.: Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36(4), 321–322 (2000)CrossRefGoogle Scholar
  40. Zhang L., Li Y., Song M., Yang J.-Y., Beausoleil R., Willner A.: Silicon microring-based signal modulation for chip-scale optical interconnection. Appl. Phys. A: Mater. Sci. Process. 95(4), 1089–1100 (2009)ADSCrossRefGoogle Scholar
  41. Zhang, Y., Vang, T.A., Taylor, G.W.: Transistor based quantum well optical modulator and its performance in RF links. In: Proceedings of SPIE 2010, vol. 1, pp. 12–22. SPIE (2010)Google Scholar
  42. Zheng X., Liu F., Patil D., Thacker H., Luo Y., Pinguet T., Mekis A., Yao J., Li G., Shi J., Raj K., Lexau J., Alon E., Ho R., Cunningham J.E., Krishnamoorthy A.V.: A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems. Opt. Express 18(1), 204–211 (2010)ADSCrossRefGoogle Scholar
  43. Zucker J.E., Chang T.Y., Wegener M., Sauer N.J., Jones K.L., Chemla D.S.: Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum wells. Photon. Technol. Lett. IEEE 2(1), 29–31 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations