Advertisement

Optical and Quantum Electronics

, Volume 44, Issue 14, pp 623–633 | Cite as

Applying a modal technique on a planar lens based on nanoscale slit arrays

  • Ismail M. Nassar
  • Aladin H. Kamel
  • Diaa Khalil
  • Omar A. Omar
Article

Abstract

A planar lens structure based on an array of nanoscale slits in a metallic film is modeled using a waveguide modal technique. The structure is modeled as a one dimensional lens followed by free space propagation. The obtained results are compared to published experimental results as well as numerical simulations using either the finite difference frequency domain or the transmission line method. A good agreement has been obtained with significant simulation time reduction.

Keywords

Diffraction Planar lens Modal technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed O.S., Swillam M.A., Bakr M.H., Li X.: Modeling and design of nano-plasmonic structures using transmission line modeling. Opt. Express 18(21), 21784–21797 (2010)ADSCrossRefGoogle Scholar
  2. Azpiroza, J.T., Burrb, G.W., Rosenbluthc, A.E., Hibbs, M.: Massively-parallel FDTD simulations to address mask electromagnetic effects in hyper-NA immersion lithography. In: Optical Microlithography, vol. 6924 (2008)Google Scholar
  3. Huang W.P., Chu S.T., Chaudhuri S.K.: A scalar coupled-mode theory with vector correction. IEEE J. Quantum Electron. QE-28, 184–193 (1992)ADSCrossRefGoogle Scholar
  4. Lalanne P., Silberstein E.: Fourier-modal methods applied to waveguide computational problems. Opt. Lett. 25(15), 1092–1094 (2000)ADSCrossRefGoogle Scholar
  5. Moharam M.G., Grann E.B., Pommet D.A., Gaylord T.K.: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA A 12(5), 1068–1076 (1995)ADSCrossRefGoogle Scholar
  6. Nassar I.M., El-Refaei H., Khalil D., Omar O.A.: The design and optimization of an ion-exchanged polarization converter using a genetic algorithm. IEEE Phot. Tech. Lett. 19(16), 1218–1220 (2007)ADSCrossRefGoogle Scholar
  7. Schuster T., Ruoff J., Kerwien N., Rafler S., Osten W.: Normal vector method for convergence improvement using the RCWA for crossed gratings. J. Opt. Soc. Am. A 24(9), 2880–2890 (2007)ADSCrossRefGoogle Scholar
  8. Taflove A., Hagness S.C.: Computational Electrodynamics: the Finite-Difference Time-Domain Method. Artech House, Boston (2000)MATHGoogle Scholar
  9. Verslegers L., Catrysse P.B., Yu Z., White J.S., Barnard E.S., Brongersma M.L., Fan S.: Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9(1), 235–238 (2009)ADSCrossRefGoogle Scholar
  10. Völkel R., Weible K.J.: On the chromatic aberration of microlenses. Opt. Express 14(11), 4687–4694 (2006)ADSCrossRefGoogle Scholar
  11. Yariv A.: Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. QE-9, 919–933 (1973)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Ismail M. Nassar
    • 1
  • Aladin H. Kamel
    • 2
  • Diaa Khalil
    • 1
  • Omar A. Omar
    • 1
  1. 1.Faculty of EngineeringAin Shams UniversityCairoEgypt
  2. 2.Advanced IndustrialTechnical and Engineering CenterCairoEgypt

Personalised recommendations