Optical and Quantum Electronics

, Volume 44, Issue 10–11, pp 471–482 | Cite as

Practical SARG04 quantum key distribution

  • Sellami Ali
  • Sellami Mohammed
  • M. S. H. Chowdhury
  • Aisha A. Hasan


We have presented a method to estimate parameters of the decoy state method based on one decoy state protocol for SARG04. This method has given lower bound of the fraction of single-photon counts (y 1), the fraction of two-photon counts (y 2), the upper bound QBER of single-photon pulses (e 1), the upper bound QBER of two-photon pulses (e 2), and the lower bound of key generation rate for both BB84 and SARG04. The numerical simulation has shown that the fiber based QKD and free space QKD systems using the proposed method for BB84 are able to achieve both a higher secret key rate and greater secure distance than that of SARG04. Also, it is shown that bidirectional ground to satellite and inter-satellite communications are possible with our protocol.


Quantum cryptography Quantum key distribution Decoy state protocol Optical communications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali S., Wahiddin M.R.B.: Fiber and free-space practical decoy state QKD for both BB84 and SARG04 protocols. Eur. Phys. J. D 60, 405–410 (2010)ADSCrossRefGoogle Scholar
  2. Aviv D.G.: Laser Space Communications. Artech House, London (2006)Google Scholar
  3. Branciard C.: Security of two quantum cryptography protocols using the same four qubit states. Phys. Rev. A 72, 032301–032317 (2005)ADSCrossRefGoogle Scholar
  4. Cai Q.-y., Tan Y.-g.: Photon-number-resolving decoy-state quantum key distribution. Phys. Rev. A 75, 449–455 (2007)Google Scholar
  5. Curty M. et al.: Passive decoy-state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310–022324 (2010)ADSCrossRefGoogle Scholar
  6. Elterman L.: Parameters for attenuation in atmospheric windows for fifteen wavelengths. Appl. Opt. 3(745), 745–749 (1964)ADSCrossRefGoogle Scholar
  7. Fung C.-H., Tamaki K., Lo H.-K.: On the performance of two protocols: SARG04 and BB84. Phys. Rev. A. 73, 012337–012356 (2006)ADSCrossRefGoogle Scholar
  8. Gatenby P.V., Grant M.A.: Optical intersatellite links. Electron. Commun. Eng. J. 3(280), 280–288 (1991)CrossRefGoogle Scholar
  9. Gobby C., Yuan Z.L., Shields A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRefGoogle Scholar
  10. Gottesman D., Lo H.-K., Lütkenhaus N., Preskill J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(325), 325–360 (2004)MathSciNetMATHGoogle Scholar
  11. Horikiri T., Kobayashi T.: Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys. Rev. A 73, 032331–032336 (2006)ADSCrossRefGoogle Scholar
  12. Hwang W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901–057905 (2003)ADSCrossRefGoogle Scholar
  13. Inamori H., Lütkenhaus N., Mayers D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599–627 (2007)ADSCrossRefGoogle Scholar
  14. Koashi M.: Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501–120504 (2004)ADSCrossRefGoogle Scholar
  15. Li J.-B., Fang X.-M.: Nonorthogonal decoy-state quantum key distribution. Chin. Phys. Lett. 23(4), 757–778 (2006)Google Scholar
  16. Ma X. et al.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005). doi: 10.1103/PhysRevA.72.012326 ADSCrossRefGoogle Scholar
  17. Meyer-Scott E. et al.: How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss. Phys. Rev. A 84, 062326–062333 (2011)ADSCrossRefGoogle Scholar
  18. Mo X.-F. et al.: Faraday-Michelson system for quantum cryptography. Opt. Lett. 30, 2632–2634 (2005)ADSCrossRefGoogle Scholar
  19. Peng C.-Z. et al.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505–010509 (2007)ADSCrossRefGoogle Scholar
  20. Rosenberg D. et al.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503–010507 (2007)ADSCrossRefGoogle Scholar
  21. Scarani V. et al.: Quantum cryptography protocols Robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901–057904 (2004)ADSCrossRefGoogle Scholar
  22. Schmitt-Manderbach T. et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504–010508 (2007)ADSCrossRefGoogle Scholar
  23. Shor P.W., Preskill J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(441), 441–444 (2000)ADSCrossRefGoogle Scholar
  24. Tamaki K., Lo H.-K.: Unconditionally secure key distillation from multiphotons. Phys. Rev. A 73, 010302–010305(R) (2006)ADSCrossRefGoogle Scholar
  25. Tan Y.G., Cai Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449–455 (2010)ADSCrossRefGoogle Scholar
  26. Ursin R. et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007). doi: 10.1038/nphys629 CrossRefGoogle Scholar
  27. Wang X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72, 012322–012328 (2005)ADSCrossRefGoogle Scholar
  28. Wang X.-B.: Decoy-state quantum key distribution with large random errors of light intensity. Phys. Rev. A 75, 052301–052309 (2007)ADSCrossRefGoogle Scholar
  29. Wang Q., Wang X.-B., Guo G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312–012317 (2007a)ADSCrossRefGoogle Scholar
  30. Wang X.-B., Peng C.-Z., Pan J.-W.: Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source. Appl. Phys. Lett. 90, 8587–8594 (2007)Google Scholar
  31. Yin Z.-Q., Han Z.-F., Sun F.-W., Guo G.-C.: Decoy state quantum key distribution with modified coherent state. Phys. Rev. A 76, 014304–014308 (2007)ADSCrossRefGoogle Scholar
  32. Yin Z.-Q. et al.: Decoy states for quantum key distribution based on decoherence-free subspaces. Phys. Rev. A 77, 062326–062331 (2008)ADSCrossRefGoogle Scholar
  33. Yuan Z.L., Sharpe A.W., Shields A.J.: Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett. 90, 8465–8471 (2007)Google Scholar
  34. Zhao, Yi, et al.: Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber. In: Proceedings of IEEE International Symposium on Information Theory, pp. 2094–2098 (2006)Google Scholar
  35. Zhao Y. et al.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. Lett. 78, 042333–042337 (2008)ADSGoogle Scholar
  36. Zhou Y.-y., Zhou X.-j.: SARG04 decoy-state quantum key distribution based on an unstable source. Optoelectron. Lett. 7(5), 389–393 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Sellami Ali
    • 1
  • Sellami Mohammed
    • 2
  • M. S. H. Chowdhury
    • 1
  • Aisha A. Hasan
    • 3
  1. 1.Department of Science in Engineering, Faculty of EngineeringInternational Islamic University MalaysiaJalan Gombak, Kuala LumpurMalaysia
  2. 2.Electrical Department, Faculty of TechnologyBejaia UniversityBejaiaAlgeria
  3. 3.Department of Electrical and Computer Engineering, Faculty of EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations