Advertisement

Optical and Quantum Electronics

, Volume 44, Issue 3–5, pp 291–296 | Cite as

Characterization of TiO2 atomic crystals for nanocomposite materials oriented to optoelectronics

  • L. Chiodo
  • A. Massaro
  • S. Laricchia
  • F. Della Sala
  • R. Cingolani
  • M. Salazar
  • A. H. Romero
  • A. Rubio
Article

Abstract

Atomic clusters (TiO2)n are studied by means of state of the art techniques for structural, electronic and optical properties. We combine molecular dynamics, density functional theory and time dependent density functional theory to provide a deep and comprehensive characterization of the system. Atomic clusters can be considered the starting seeds for the synthesis of larger nanostructures of technological interest. Also, given the complexity of the material itself, a clear theoretical description of its basic properties provides interesting results both from the solid state physics and chemistry point of view.

Keywords

Component Ab-initio excited states Atomic clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castro A., Appel H., Oliveira M., Rozzi C.A., Andrade X., Lorenzen F., Marques M.A.L., Gross E.K.U., Rubio A.: Octopus: a tool for the application of time-dependent density functional theory. Phys. Stat. Sol. B 243, 2465–2488 (2006)ADSCrossRefGoogle Scholar
  2. De Angelis, F., Fantacci, S., Selloni, A.: Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology 19, 424002 (2008)Google Scholar
  3. De Angelis F., Tilocca A., Selloni A.: A time-dependent DFT study of [Fe(CN)6]4− sensitization of TiO 2 nanoparticles. J. Am. Chem. Soc. 126, 15024–15025 (2004)CrossRefGoogle Scholar
  4. Duncan W.R., Craig C.F., Prezhdo O.V.: Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO 2. J. Am. Chem. Soc. 129, 8528–8543 (2007)CrossRefGoogle Scholar
  5. Duncan W.R., Prezhdo O.V.: Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem 58, 143–184 (2007)ADSCrossRefGoogle Scholar
  6. Duncan W.R., Prezhdo O.V.: Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory. J. Am. Chem. Soc. 130, 9756–9762 (2008)CrossRefGoogle Scholar
  7. Giannozzi P. et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  8. Helgaker T., Jørgensen P., Olsen J.: Molecular Electronic-Structure Theory. Wiley, UK (2000)Google Scholar
  9. Hohenberg P., Kohn W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)MathSciNetADSCrossRefGoogle Scholar
  10. Iacomino, A., Cantele, G., Ninno, D., Marri, I., Ossicini, S.: Structural, electronic, and surface properties of anatase TiO2 nanocrystals from first principles. Phys. Rev. B 78, 075405 (2008)Google Scholar
  11. Li S., Dixon D.A.: Molecular structures and energetics of the (TiO2)n (n =  1−4) clusters and their anions. J. Phys. Chem. A 112, 6646–6666 (2008)CrossRefGoogle Scholar
  12. Marques, M.A.L., Ullrich, C., Nogueira, F., Rubio, A., Burke, K., Gross, E. (eds): Time-dependent density functional theory, vol. 706. Springer, Berlin (2006)Google Scholar
  13. Massaro, A.: Theory, modeling, technology and applications of micro/nano quantum electronic and photonic devices. Trans. Res. Netw., 127–131 (2010)Google Scholar
  14. Massaro A., Spano F., Ekuakille A.L., Cazzato P., Cingolani R., Athanassiou A.: Design and characterization of nanocomposite pressure sensor implemented in tactile robotic system. IEEE Trans. Instrum. Meas. 60(8), 2967–2975 (2011a)CrossRefGoogle Scholar
  15. Massaro A., Spano F., Cazzato P., Cingolani R.: Innovative optical tactile sensor for robotic system by gold nanocomposite material. Prog. Electromagn. Res. (PIERM) J. 16, 145–158 (2011b)Google Scholar
  16. Massaro A., Spano F., Cingolani R., Athanassiou A.: Real time optical pressure sensing for tactile detection using gold nanocomposite material. J. Microelectron. Eng. 88, 2767–2770 (2011c)CrossRefGoogle Scholar
  17. Mowbray D.J., Martinez J.I., García-Lastra J.M., Thygesen K.S., Jacobsen K.W.: Stability and electronic properties of TiO2 nanostructures with and without B and N doping. J. Phys. Chem. C 113, 12301–12308 (2009)CrossRefGoogle Scholar
  18. Onida G., Reining L., Rubio A.: Electronic excitations: density-functional versus many-body Green’s- function approaches. Rev. Mod. Phys. 74, 601–659 (2002)ADSCrossRefGoogle Scholar
  19. Prezhdo O.V., Duncan W.R., Prezhdo V.V.: Dynamics of the photoexcited electron at the chromophore- semiconductor interface. Acc. Chem. Res. 41, 339–348 (2008)CrossRefGoogle Scholar
  20. Scandolo S. et al.: First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Zeit. Krist 220, 574–579 (2005)CrossRefGoogle Scholar
  21. Selloni A.: Crystal growth: anatase shows its reactive side. Nat. Mater. 7, 613–615 (2008)ADSCrossRefGoogle Scholar
  22. Shevlin S.A., Woodley S.M.: Electronic and optical properties of doped and undoped (TiO2)n nanoparticles. J. Phys. Chem. C 114, 17333–17343 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • L. Chiodo
    • 1
  • A. Massaro
    • 1
  • S. Laricchia
    • 1
  • F. Della Sala
    • 1
  • R. Cingolani
    • 1
  • M. Salazar
    • 2
  • A. H. Romero
    • 2
  • A. Rubio
    • 3
  1. 1.Center for Biomolecular NanotechnologiesIIT Istituto Italiano di TecnologiaLecceItaly
  2. 2.CINVESTAV, Unidad QuerétaroReal de JuriquillaMéxico
  3. 3.Nano-Bio Spectroscopy group and ETSF Scientific Development Centre, Centro de Fisica de Materiales CSIC-UPV/EHU- MPC and DIPC, Dpto. Fisica de MaterialesUniversidad del Pais VascoSan SebastianSpain

Personalised recommendations