Optical and Quantum Electronics

, Volume 44, Issue 3–5, pp 255–263 | Cite as

Picosecond wavelength conversion using semiconductor optical amplifier integrated with microring resonator notch filter

  • M. Razaghi
  • M. Gandomkar
  • V. Ahmadi
  • N. K. Das
  • M. J. Connelly


In this paper, we analyse the picosecond wavelength conversion using semiconductor optical amplifier (SOA) with a novel technique. For an accurate and precise modelling, all the nonlinear effects that are relevant to picosecond and subpicosecond pulse regime, such as, self-phase modulation, nonlinear Kerr effect, spectral hole burning, carrier heating, carrier depletion, two-photon absorption and group velocity dispersion are taken into account in the SOA model. We integrate the structure with a microring resonator notch filter to eliminate the unwanted pump and probe signals at the output of the system. It shows that with the three coupled microring resonators, output four-wave mixing (FWM) signal generated by the SOA can be filtered accurately. Moreover, our results demonstrate that the microring resonator can be used for modifying the shape and spectrum of the output FWM signal. Simulation results show that this new technique enhances the output time bandwidth product.


Semiconductor optical amplifier Microring resonators Nonlinear effects Four-wave mixing Pulse shaping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Connelly M.J.: Semiconductor Optical Amplifiers. Kluwer, Boston, MA (2002)Google Scholar
  2. Das N.K., Yamayoshi Y., Kawaguchi H.: Analysis of basic four-wave mixing characteristics in a semiconductor optical amplifier by the finite-difference beam propagation method. IEEE J. Quantum Electron. 36(10), 1184–1192 (2000)ADSCrossRefGoogle Scholar
  3. Gandomkar M., Ahmadi V.: Design and analysis of enhanced second harmonic generation in AlGaAs/AlO x microring waveguide. Opt. Express 19, 9408–9418 (2011)ADSCrossRefGoogle Scholar
  4. Hagness, H.C.: FDTD computational electromagnetics modeling of microcavity lasers and resonant optical structures. PhD thesis Dissertation, Illinois, USA, Northwestern University (1998)Google Scholar
  5. Little B.E., Chu S.T., Haus H.A., Foresi J., Laine J.P.: Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)ADSCrossRefGoogle Scholar
  6. Meuer C. et al.: 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Opt. Express 19, 5134–5142 (2011)ADSCrossRefGoogle Scholar
  7. Razaghi M., Ahmadi V., Connelly M.J.: Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier. IEEE/OSA J. Lightw. Technol. 27(15), 3162–3174 (2009)ADSCrossRefGoogle Scholar
  8. Razaghi M., Ahmadi V., Connelly M.J.: Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier. Opt. Quantum Electron. (Springer) 41, 513–523 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • M. Razaghi
    • 1
  • M. Gandomkar
    • 2
  • V. Ahmadi
    • 3
  • N. K. Das
    • 4
  • M. J. Connelly
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of KurdistanSanandajIran
  2. 2.Department of Electrical and Computer EngineeringJondi-Shapour University of TechnologyDezfulIran
  3. 3.Department of Electrical and Computer EngineeringTarbiat Modares UniversityTehranIran
  4. 4.Department of Electrical and Computer EngineeringCurtin UniversityPerthAustralia
  5. 5.Department of Electronic and Computer EngineeringUniversity of LimerickLimerickIreland

Personalised recommendations