Optical and Quantum Electronics

, Volume 44, Issue 1–2, pp 45–54 | Cite as

Analysis and improvement of optical frequency response in a long wavelength transistor laser

  • Hassan Rahbardar Mojaver
  • Hassan Kaatuzian


Charge control model and rate equations have been exploited for the first time in order to glean the optical frequency response of a long-wavelength heterojunction bipolar transistor laser. For a 1.56 μm N-InP/p-InAlGaAs/N-InP fabricated transistor laser with a single quantum well, the optical bandwidth is estimated using this model. All parameters of the mentioned model have been computed for this new type of long wavelength transistor laser. It has been found that frequency response of this optoelectronic device has a 29 dB resonance peak which is not very desirable and is so higher than traditional GaAs transistor lasers. Furthermore, we have illustrated that the resonance peak will decrease and the optical bandwidth will increase, if we increase the width of the quantum well. Finally, we have analyzed that how base width affects on the optical bandwidth and resonance peak of frequency response. It has been proved that, there is a trade-off between larger bandwidth and lower resonance peak for base width effect.


Transistor laser Long-wavelength Optical frequency response Quantum well Base width effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asada M.: Gain and intervalence band absorption in QW lasers. IEEE J. Quantum Electron. 20(7), 745–753 (1984)ADSCrossRefGoogle Scholar
  2. Berger V.: Three-level laser based on intersubband transitions in asymmetric quantum wells: a theoretical study. Semicond. Sci. Technol. 9, 1493–1499 (1994)ADSCrossRefGoogle Scholar
  3. Coldren L.A., Corzine S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York (1995)Google Scholar
  4. Dixon F., Feng M., Holonyak N., Huang Y., Zhang Z.B., Ryou J.H., Dupuis R.D.: Transistor laser with emission wavelength at 1544 nm. Appl. Phys. Lett. 93(2), 021111-1–021111-3 (2008)ADSCrossRefGoogle Scholar
  5. Faraji B., Wei S., Pulfrey D.L., Chrostowski L.: Analytical modeling of the transistor laser. IEEE J. Quantum Electron. 15, 594–603 (2009). doi: 10.1109/JSTQE.2009.2013178 CrossRefGoogle Scholar
  6. Feng M., Holonyak N., Walter G., Chan R.: Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005). doi: 10.1063/1.2058213 ADSCrossRefGoogle Scholar
  7. Feng M., Holonyak N., James A., Cimino K., Walter G., Chan R.: Carrier lifetime and modulation bandwidth of a quantum well AlGaAs/InGaP/GaAs/InGaAs transistor laser. Appl. Phys. Lett. 89, 113504–113507 (2006). doi: 10.1063/1.2346369 ADSCrossRefGoogle Scholar
  8. Feng M., Holonyak N., Then H.W., Walter G.: Charge control analysis of transistor laser operation. Appl. Phys. Lett. 91, 053501–053503 (2007). doi: 10.1063/1.2767172 ADSCrossRefGoogle Scholar
  9. Harrison P.: Quantum Wells, Wires and Dots. Wiley, New York (2005)CrossRefGoogle Scholar
  10. Holonyak N., Feng M.: The transistor laser. IEEE Spectr. 43(2), 50–55 (2006)CrossRefGoogle Scholar
  11. Huang Y., Ryou J., Dupuis R.D.: Epitaxial structure design of a long-wavelength InAlGaAs/InP transistor laser. IEEE J. Quantum Electron. 47(5), 642–650 (2011). doi: 10.1109/JQE.2011.2108636 ADSCrossRefGoogle Scholar
  12. Huang Y., Ryou J., Dupuis R.D., Dixon F., Holonyak N., Feng M.: InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer. J. Appl. Phys. 109, 063106–063112 (2011). doi: 10.1063/1.3561368 ADSCrossRefGoogle Scholar
  13. Kaatuzian H.: Photonics, vol. 1, pp. 193. Amirkabir University of Technology Press, Tehran (2005)Google Scholar
  14. Kaatuzian, H., Rahbardar, H., Taghavi, I.: Optical modulation bandwidth enhancement of heterojunction bipolar transistor lasers using base width variation. In: NUSOD 2011 proceeding (2011)Google Scholar
  15. Smet J.H., Fonstad C.G., Hu Q.: Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. J. Appl. Phys. 79, 9305–9320 (1996). doi: 10.1063/1.362607 ADSCrossRefGoogle Scholar
  16. Taghavi I., Kaatuzian H.: Gain-bandwidth trade-off in a transistor laser: quantum well dislocation effect. Opt. Quant. Electron. 41, 481–488 (2010). doi: 10.1007/s11082-010-9384-0 CrossRefGoogle Scholar
  17. Then H.W., Feng M., Holonyak N., Wu C.H.: Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping. Appl. Phys. Lett. 91, 033505–033508 (2007). doi: 10.1063/1.2759263 ADSCrossRefGoogle Scholar
  18. Zhang L., Leburton J.P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. J. Appl. Phys. 45, 359–366 (2009). doi: 10.1109/JQE.2009.2013215 Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Electrical Engineering Department, Photonic Research Laboratory (PRL)Amirkabir University of TechnologyTehranIran

Personalised recommendations