Skip to main content
Log in

Analysis and improvement of optical frequency response in a long wavelength transistor laser

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Charge control model and rate equations have been exploited for the first time in order to glean the optical frequency response of a long-wavelength heterojunction bipolar transistor laser. For a 1.56 μm N-InP/p-InAlGaAs/N-InP fabricated transistor laser with a single quantum well, the optical bandwidth is estimated using this model. All parameters of the mentioned model have been computed for this new type of long wavelength transistor laser. It has been found that frequency response of this optoelectronic device has a 29 dB resonance peak which is not very desirable and is so higher than traditional GaAs transistor lasers. Furthermore, we have illustrated that the resonance peak will decrease and the optical bandwidth will increase, if we increase the width of the quantum well. Finally, we have analyzed that how base width affects on the optical bandwidth and resonance peak of frequency response. It has been proved that, there is a trade-off between larger bandwidth and lower resonance peak for base width effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asada M.: Gain and intervalence band absorption in QW lasers. IEEE J. Quantum Electron. 20(7), 745–753 (1984)

    Article  ADS  Google Scholar 

  • Berger V.: Three-level laser based on intersubband transitions in asymmetric quantum wells: a theoretical study. Semicond. Sci. Technol. 9, 1493–1499 (1994)

    Article  ADS  Google Scholar 

  • Coldren L.A., Corzine S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York (1995)

    Google Scholar 

  • Dixon F., Feng M., Holonyak N., Huang Y., Zhang Z.B., Ryou J.H., Dupuis R.D.: Transistor laser with emission wavelength at 1544 nm. Appl. Phys. Lett. 93(2), 021111-1–021111-3 (2008)

    Article  ADS  Google Scholar 

  • Faraji B., Wei S., Pulfrey D.L., Chrostowski L.: Analytical modeling of the transistor laser. IEEE J. Quantum Electron. 15, 594–603 (2009). doi:10.1109/JSTQE.2009.2013178

    Article  Google Scholar 

  • Feng M., Holonyak N., Walter G., Chan R.: Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005). doi:10.1063/1.2058213

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N., James A., Cimino K., Walter G., Chan R.: Carrier lifetime and modulation bandwidth of a quantum well AlGaAs/InGaP/GaAs/InGaAs transistor laser. Appl. Phys. Lett. 89, 113504–113507 (2006). doi:10.1063/1.2346369

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N., Then H.W., Walter G.: Charge control analysis of transistor laser operation. Appl. Phys. Lett. 91, 053501–053503 (2007). doi:10.1063/1.2767172

    Article  ADS  Google Scholar 

  • Harrison P.: Quantum Wells, Wires and Dots. Wiley, New York (2005)

    Book  Google Scholar 

  • Holonyak N., Feng M.: The transistor laser. IEEE Spectr. 43(2), 50–55 (2006)

    Article  Google Scholar 

  • Huang Y., Ryou J., Dupuis R.D.: Epitaxial structure design of a long-wavelength InAlGaAs/InP transistor laser. IEEE J. Quantum Electron. 47(5), 642–650 (2011). doi:10.1109/JQE.2011.2108636

    Article  ADS  Google Scholar 

  • Huang Y., Ryou J., Dupuis R.D., Dixon F., Holonyak N., Feng M.: InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer. J. Appl. Phys. 109, 063106–063112 (2011). doi:10.1063/1.3561368

    Article  ADS  Google Scholar 

  • Kaatuzian H.: Photonics, vol. 1, pp. 193. Amirkabir University of Technology Press, Tehran (2005)

    Google Scholar 

  • Kaatuzian, H., Rahbardar, H., Taghavi, I.: Optical modulation bandwidth enhancement of heterojunction bipolar transistor lasers using base width variation. In: NUSOD 2011 proceeding (2011)

  • Smet J.H., Fonstad C.G., Hu Q.: Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. J. Appl. Phys. 79, 9305–9320 (1996). doi:10.1063/1.362607

    Article  ADS  Google Scholar 

  • Taghavi I., Kaatuzian H.: Gain-bandwidth trade-off in a transistor laser: quantum well dislocation effect. Opt. Quant. Electron. 41, 481–488 (2010). doi:10.1007/s11082-010-9384-0

    Article  Google Scholar 

  • Then H.W., Feng M., Holonyak N., Wu C.H.: Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping. Appl. Phys. Lett. 91, 033505–033508 (2007). doi:10.1063/1.2759263

    Article  ADS  Google Scholar 

  • Zhang L., Leburton J.P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. J. Appl. Phys. 45, 359–366 (2009). doi:10.1109/JQE.2009.2013215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Rahbardar Mojaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojaver, H.R., Kaatuzian, H. Analysis and improvement of optical frequency response in a long wavelength transistor laser. Opt Quant Electron 44, 45–54 (2012). https://doi.org/10.1007/s11082-011-9531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9531-2

Keywords

Navigation