Optical and Quantum Electronics

, Volume 42, Issue 11–13, pp 777–783 | Cite as

Modeling of quantum dot lasers with microscopic treatment of Coulomb effects

  • Thomas Koprucki
  • Alexander Wilms
  • Andreas Knorr
  • Uwe Bandelow


We present a spatially resolved semiclassical model for the simulation of semiconductor quantum-dot lasers including a multi-species description for the carriers along the optical active region. The model links microscopically determined quantities like scattering rates and dephasing times, that essentially depend via Coulomb interaction on the carrier densities, with macroscopic transport equations and equations for the optical field.


Quantum dots Optoelectronics Transport Coulomb scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandelow U., Hünlich R., Koprucki T.: Simulation of static and dynamic properties of edge-emitting multi quantum well lasers. IEEE J. Sel. Top. Quantum Electron. 9(3), 798–806 (2003)CrossRefGoogle Scholar
  2. Dachner M.R., Malic E., Richter M., Carmele A., Kabuss J., Wilms A., Kim J.E., Hartmann G., Wolters J., Bandelow U., Knorr A.: Theory of carrier and photon dynamics in quantum dot light emitters. Phys. Status Solidi B 247(4), 809–828 (2010)CrossRefGoogle Scholar
  3. Grupen M., Hess K.: Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quantum Electron. 34(1), 120–140 (1998)ADSCrossRefGoogle Scholar
  4. Haug H., Koch S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (2004)Google Scholar
  5. Kim J.E., Malic E., Richter M., Wilms A., Knorr A.: Maxwell-bloch equation approach for describing the microscopic dynamics of QD surface-emitting structures. IEEE J. Quantum Electron. 46(7), 1115–1126 (2010)ADSCrossRefGoogle Scholar
  6. Lorke, M.: Optical gain and laser properties of semiconductor QD systems. Ph.D. thesis, Uni Bremen (2008)Google Scholar
  7. Lorke M., Nielsen T., Seebeck J., Gartner P., Jahnke F.: Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems. Phys. Rev. B 73(8), 085324 (2006)ADSCrossRefGoogle Scholar
  8. Lüdge K., Schöll E.: Quantum-dot lasers–desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)CrossRefGoogle Scholar
  9. Lüdge K., Bormann M.J.P., Malić E., Hövel P., Kuntz M., Bimberg D., Knorr A., Schöll E.: Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys. Rev. B 78(3), 035316 (2008)ADSCrossRefGoogle Scholar
  10. Malic E., Ahn K.J., Bormann M.J.P., Hovel P., Scholl E., Knorr A., Kuntz M., Bimberg D.: Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89(10), 101107 (2006)ADSCrossRefGoogle Scholar
  11. Malic E., Bormann M.J., Hövel P., Kuntz M., Bimberg D., Knorr A., Schöll E.: Coulomb damped relaxation oscillations in semiconductor quantum dot lasers. IEEE J. Sel. Top. Quantum Electron. 13(5), 1242–1248 (2007)CrossRefGoogle Scholar
  12. Nielsen T., Gartner P., Jahnke F.: Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69(23), 235314 (2004)ADSCrossRefGoogle Scholar
  13. Nilsson H.H., Zhang J.Z., Galbraith I.: Homogeneous broadening in quantum dots due to auger scattering with wetting layer carriers. Phys. Rev. B 72(20), 205331 (2005)ADSCrossRefGoogle Scholar
  14. Steiger S., Veprek R.G., Witzigmann B.: Unified simulation of transport and luminescence in optoelectronic nanostructure. J. Comput. Electron. 7(4), 509–520 (2008)CrossRefGoogle Scholar
  15. Viktorov E., Mandel P., Vladimirov A., Bandelow U.: Model for mode-locking in quantum dot lasers. Appl. Phys. Lett. 88(20), 201102 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Thomas Koprucki
    • 1
  • Alexander Wilms
    • 1
  • Andreas Knorr
    • 2
  • Uwe Bandelow
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Institute for Theoretical Physics, TU BerlinBerlinGermany

Personalised recommendations