Optical and Quantum Electronics

, Volume 42, Issue 6–7, pp 389–407 | Cite as

Complex chaos and bifurcations of semiconductor lasers subjected to optical injection



This paper presents the nonlinear dynamics and bifurcations of optically injection semiconductor lasers in the frame of relative weak injection strength. We consider the new modified rate equations model established recently and the behavior of the system is explored by means of bifurcation diagrams. However, the exact nature of the involved dynamics is well described by a detailed study of the changes of dynamics as a function of the effective gain coefficient. As results, we notice symmetry spectra of intensity, the sudden transition between chaos and stable limit cycle, double scroll attractors together with the phenomenon of a sequence of period-doubling route of chaos, strict crisis between the two basins attraction and the boundary crisis as well as the effects of frequency detuning and linewidth enhancement factor on the nonlinear behaviors.


Chaos Bifurcations Semiconductor lasers Optical injection Double scroll attractors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal G.P., Dutta N.K.: Semiconductor Lasers. Reinhold, New York (1993)Google Scholar
  2. Alligood K.T., Sauer T.D., Yorke J.A.: Chaos. Springer-Verlag, New York (1997)CrossRefGoogle Scholar
  3. Anishchenko S.V., Strelkova G.I.: Irregular attractors. Discret. Dyn. Nat. Soc. 2, 53–72 (1998)MATHCrossRefGoogle Scholar
  4. Annovazzi-Lodi V., Sciré A., Sorel M., Donati D.: Dynamic behavior and locking of a semiconductor laser subjected to external injection. IEEE J. Q. Electron 34, 2350–2356 (1998)ADSCrossRefGoogle Scholar
  5. Cassidy D.T.: Comparison of rate equation and FP approaches to modeling a diode laser. Appl. Opt. 22, 3321–3326 (1983)ADSCrossRefGoogle Scholar
  6. Chua L.O.: Global unfolding of Chua’s circuit. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E76-A, 704–734 (1993)Google Scholar
  7. Gavrielides A., Kovanis V., Erneux T.: Analytical stability boundaries for a semiconductor laser subject to the optical injection. Opt. Commun. 136, 253–256 (1997)ADSCrossRefGoogle Scholar
  8. Gavrielides A., Kovanis V., Nizette M., Erneux T., Simpson T.B.: Period three limit-cycles in injected semiconductor lasers. J. Opt. B Q Semiclass. Opt. 4, 20–26 (2002)ADSCrossRefGoogle Scholar
  9. Golubitsky M., Schaeffer D.G.: Singularities and Groups in Bifurcation Theory I, Applied Mathematical Sciences. Springer, Berlin (1985)Google Scholar
  10. Golubitsky M., Stuart I., Schaeffer D.G.: Singularities and Groups in Bifurcation Theory II, Applied Mathematical Sciences. Springer, Berlin (1988)CrossRefGoogle Scholar
  11. Gordon R.: FP semiconductor laser injection locking. IEEE J. Q. Electron 42, 353–356 (2006)ADSCrossRefGoogle Scholar
  12. Greborgi C., Ott E., Yorke J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507–1510 (1982)ADSCrossRefMathSciNetGoogle Scholar
  13. Hwang S.K., Liu J.M.: Dynamical characteristics of an optically injected semiconductor laser. Opt. Commun. 183, 195–205 (2000)ADSCrossRefGoogle Scholar
  14. Itoh M., Chua L.O.: Star cellular neural network for associative and dynamic memories. Int. J. Bifurcation Chaos 14, 1725–1772 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. Kaplan J., Yorke J.: Chaotic behavior of multi-dimensional difference equations. Lect. Notes Math. 730, 204–227 (1979)CrossRefMathSciNetGoogle Scholar
  16. Kennedy, M. P.: Chua’s circuit—Encyclopedia of nonlinear science. In: Scott, A. (ed.), pp. 136–138. Routledge, New York (2005)Google Scholar
  17. Krauskopt B., Gray G.R., Lenstra V.: Semiconductor laser with phase-cojugate feedback: dynamics and bifurcations. Phys. Rev. E 58(6), 7190–7197 (1998)ADSCrossRefGoogle Scholar
  18. Krauskopt B., Green K.: Chaos via the Break-up of a torus in a semiconductor laser with phase-conjugate feedback. J. Comput. Phys. 186, 230–231 (2003)ADSCrossRefMathSciNetGoogle Scholar
  19. Labukhin D., Stolz C.A., Zakhleniuk N.A. et al.: Modified Fabry–Perot and rate equation methods for the nonlinear dynamics of an optically injected semiconductor laser. IEEE J. Q. Electron 45, 863–871 (2009)ADSGoogle Scholar
  20. Lang R.: Injection locking properties of a semiconductor laser. IEEE J. Q. Electron QE-18, 976–983 (1982)ADSCrossRefGoogle Scholar
  21. Lang R., Kobayashi K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Q. Electron QE-16, 347–355 (1980)ADSCrossRefGoogle Scholar
  22. Law J.Y., van Tartwijk G.H.M., Agrawal G.P.: Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers. Q. Semiclass 9, 737–747 (1997)CrossRefGoogle Scholar
  23. Li X., Pan W., Luo B., Ma D. et al.: Nonlinear behaviors of an optically injected vertical-cavity surface-emitting laser. Chaos Solitons Fract. 27, 1387–1394 (2006)ADSMATHCrossRefGoogle Scholar
  24. Lin F.Y., Liu J.M.: Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback. IEEE J. Q. Electron 39, 562–567 (2003)ADSCrossRefMathSciNetGoogle Scholar
  25. Meng X.J., Chau T., Wu M.C.: Improved intrinsic dynamic distorsions in directly modulated semiconductor lasers by optical injection locking. IEEE Trans. Microw. Theory Tech. 47, 1172–1176 (1999)ADSCrossRefGoogle Scholar
  26. Ogorzatek M.J.: Chaos and Complexity in Nonlinear Electronic Circuits. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  27. Ohtsubo J.: Semiconductor Lasers: Stability, Instability and Chaos. Springer, Berlin-verlag (2006)Google Scholar
  28. Sacher J., Baums D., Panknin P., Elsässer V., Göbel E.O.: Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback. Phy. Rev. A. 45, 1893–1905 (1992)ADSCrossRefGoogle Scholar
  29. Simpson T.B., Liu J.M., Gavrielides A.: Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection. IEEE J Q. Electron. 32, 1456–1468 (1996)ADSCrossRefGoogle Scholar
  30. Sukow D.W., Gauthier D.J.: Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current. IEEE J Q. Electron 36, 175–183 (2000)ADSCrossRefGoogle Scholar
  31. Tromborg B., MØrk J.: Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers. IEEE J. Q. Electron QE-26, 642–654 (1990)ADSCrossRefGoogle Scholar
  32. Uchida A., Takahashi T., Kinugawa S., Yoshimori S.: Dynamics of chaotic oscillations in mutually coupled microchip lasers. Chaos Solitons Fract. 17, 369–377 (2003)ADSCrossRefGoogle Scholar
  33. Weiss C.O., Vilaseca R.: Dynamics of Lasers. VCH, Weinheim (1991)Google Scholar
  34. Wieczorek S., Krauskopf B., Lenstra D.: Unnested islands of period doublings in an injected semiconductor laser. Phys. Rev. E 64, 056204–056212 (2001)ADSCrossRefMathSciNetGoogle Scholar
  35. Yu S.F.: Nonlinear dynamics of vertical surface emitting lasers. IEEE J. Q. Electron 35, 332–341 (1999)ADSCrossRefGoogle Scholar
  36. Zhao X., Chang-Hasnain C.J.: A new amplifier model for resonance enhancement of optically injection-locked lasers. IEEE Photon 20, 395–397 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Yaounde 1YaoundeCameroon

Personalised recommendations