Advertisement

Optical and Quantum Electronics

, Volume 42, Issue 6–7, pp 359–365 | Cite as

Tunable multilayer narrowband filter containing an ultrathin metallic film and a lithium niobate defect

  • Yang-Hua Chang
  • Chi-Chung Liu
  • Tzong-Jer Yang
  • Chien-Jang Wu
Article

Abstract

By using lithium niobate (LiNbO3) as a defect layer, a tunable multilayer narrowband reflection-and-transmission filter containing an ultrathin metallic film is proposed. Due to the voltage dependence of the refractive index for LiNbO3, tunable optical filtering properties have been theoretically investigated based on the calculated wavelength-dependent reflectance and transmittance. The dependences of peak wavelength on the applied voltage and the angle of incidence are numerically illustrated. The results reveal that in addition to working as a tunable filter, it can also be expected to act as a refractometric optical sensor.

Keywords

Metal/dielectric films Narrowband filter Electro-optical tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustsson T.: Proposal of a DMUX with a Fabry-Perot all-reflection filter-based MMIMI configuration. IEEE Photonics Technol. Lett. 13, 215–217 (2001)ADSCrossRefGoogle Scholar
  2. Boedecker G., Henkle C.: All-frequency effective medium theory of a photonic crystal. Opt. Express 11, 1590–1595 (2003)ADSCrossRefGoogle Scholar
  3. Chang Y.-H., Liu C.-C., Yang T.-J., Wu C.-J.: Angular dependent of a narrow band reflection-and-transmission filter containing an ultrathin metallic film. J. Opt. Soc. Am. B 26, 1141–1145 (2009)ADSCrossRefGoogle Scholar
  4. Chang Y.-H., Liu C.-C., Wu C.-J.: Use of photonic quantum well as tunable defect in multilayer narrowband reflection-and-transmission filter. Opt. Rev. 17, 495–498 (2010)CrossRefGoogle Scholar
  5. Gamble R., Lissberger P.H.: Reflection filter multilayers of metallic and dielectric thin films. Appl. Opt. 28, 2838–2846 (1989)ADSCrossRefGoogle Scholar
  6. Ha Y.K., Yang Y.C., Kim J.E., Park H.Y.: Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett. 79, 15–18 (2001)ADSCrossRefGoogle Scholar
  7. Hecht E.: Optics. Addison Wesley, New York (2002)Google Scholar
  8. Inouye H., Arkawa M., Ye J.Y., Hattori T., Nakatsuka H., Hirao K.: Optical properties of a total-reflection-type one-dimensional photonic crystal. IEEE J. Quantum Electron. 38, 867–871 (2002)ADSCrossRefGoogle Scholar
  9. Joannopoulos J.D., Meade R.D., Winn J.N.: Photonic Crystals. Princeton University Press, New Jersey (1995)MATHGoogle Scholar
  10. John S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  11. Liu C.-C., Chang Y.-H., Yang T.-J., Wu C.-J.: Narrowband filter in a heterostructured multilayer containing ultrathin metallic films. Prog. Electromagn. Res. 96, 329–346 (2009)CrossRefGoogle Scholar
  12. Lu Y.Q., Zheng J.J.: Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect. Appl. Phys. Lett. 74, 123–125 (1999)ADSCrossRefGoogle Scholar
  13. Monsoriu J.A., Zapata-Rodriguez C.J., Silvestre E.: Cantor-like fractal photonic crystal waveguides. Opt. Commun. 252, 46–51 (2005)ADSCrossRefGoogle Scholar
  14. Orfanidis, S.J.: Electromagnetic Waves and Antennas, Ch.7., Rutger University. www.ece.rutgers.edu/~orfanidi/ewa (2008)
  15. Schneider G.J., Watson G.H.: Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 83, 5350–5352 (2003)ADSCrossRefGoogle Scholar
  16. Shen W., Sun X., Zhang Y., Luo Z., Liu X., Gu P.: Narrow band filter in both transmission and reflection with metal/dielectric thin films. Opt. Commun. 282, 242–246 (2009)ADSCrossRefGoogle Scholar
  17. Sheng J.-S., Lue J.-T.: Ultraviolet narrow-band rejection filters composed of multiple metal and dielectric layers. Appl. Opt. 31, 6117–6121 (1992)ADSCrossRefGoogle Scholar
  18. Shi B., Jiang Z.M., Wang X.: Defective photonic crystals with greatly enhanced second-harmonic generation. Opt. Lett. 26, 1194–1196 (2001)ADSCrossRefGoogle Scholar
  19. Smith D.R., Dalichaouch R., Kroll N., Schultz S., McCall S.L., Platzman P.M.: Photonic band structure and defects in one and two dimensions. J. Opt. Soc. Am. B 10, 314–321 (1993)ADSCrossRefGoogle Scholar
  20. Sun X.Z., Gu P.F., Shen W.D., Liu X., Wang Y., Zhang Y.G.: Design and fabrication of a novel reflection filter. Appl. Opt. 46, 2899–2902 (2007)ADSCrossRefGoogle Scholar
  21. Tan M.Q., Lin Y.C., Zhao D.Z.: Reflection filter with high reflectivity and narrow bandwidth. Appl. Opt. 36, 827–830 (1997)ADSCrossRefGoogle Scholar
  22. Yablonovitch E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  23. Zhu Q., Zhang Y.: Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate. Optik 120, 195–198 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Yang-Hua Chang
    • 1
  • Chi-Chung Liu
    • 2
  • Tzong-Jer Yang
    • 3
  • Chien-Jang Wu
    • 4
  1. 1.Department of Electronic EngineeringNational Yunlin University of Science and TechnologyYunlinTaiwan
  2. 2.Department of Electro-Optics EngineeringNational Formosa UniversityYunlinTaiwan
  3. 3.Department of Electrical EngineeringChung Hua UniversityHsinchuTaiwan
  4. 4.Institute of Electro-Optical Science and TechnologyNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations