Optical and Quantum Electronics

, Volume 42, Issue 4, pp 231–239 | Cite as

Three-dimensional gap plasmon power splitters suitable for photonic integrated circuits

  • Pouya Dastmalchi
  • Nosrat Granpayeh
  • Majid Rasouli Disfani


In this paper we have investigated the performance of a nano-optical power splitter based on gap plasmon waveguides. The structure consists of the rectangular gap plasmon waveguides in metal films. It is clear that the wave number and correspondingly light confinement and the loss in the waveguides are the most effective parameters in power splitting, but as we know coupling length is another important factor which should be considered. Some dependencies of the coupling length and the maximum transfer power on the structure parameters are studied. It has been shown that approximately 43% transfer power for each arm of the splitter is achievable. Simulation results have been obtained by the compact finite-difference time-domain method. The considered structures, because of their small coupling length and dimensions are appropriate for implementation in photonic integrated circuits.


Plasmonics Surface plasmons Splitter FDTD method Photonic integrated circuits (PICs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boltasseva A., Nikolajsen T., Leosson K., Kjaer K., Larsen M.S., Bozhevolnyi S.I.: Integrated optical components utilizing long-range surface plasmon polaritons. IEEE J. Lightwave Technol. 23, 413–422 (2005)CrossRefADSGoogle Scholar
  2. Brongersma M.L., Kik P.G.: Surface plasmon Nanophotonics. Springer, Berlin (2007)CrossRefGoogle Scholar
  3. Christensen D., Fowers D.: Modeling SPR sensors with the finite-difference time-domain method. Biosens. Bioelectron. 11, 677–684 (1996)CrossRefGoogle Scholar
  4. Dastmalchi, P., Granpayeh, N., Rasouli Disfani, M.: Analysis of coupling in the semi-cylindrical surface plasmonic couplers, Optik - Int. J. Light Electron Opt., (2010). doi: 10.1016/j.ijleo.2010.10.029
  5. Feng N., Brongersma M.L., Negro L.D.: Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. IEEE J. Quantum Electron. 43, 479–485 (2007)CrossRefADSGoogle Scholar
  6. Gramotnev D.K., Vernon K.C., Pile D.F.P.: Directional coupler using gap plasmon waveguides. Appl. Phys. B 93, 99–106 (2008)CrossRefADSGoogle Scholar
  7. Maier S.A., Kik P.G., Atwater H.A., Meltzer S., Harel E., Koel B.E., Requicha A.A.G.: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)CrossRefADSGoogle Scholar
  8. Maier S.A.: Effective mode volume of nanoscale plasmon cavities. Opt. Quant. Electron. 38, 257–267 (2006)CrossRefGoogle Scholar
  9. Mur G.: Total-field absorbing boundary conditions for the time-domain electromagnetic field equations. IEEE Trans. Electromagn. Compat. 40, 100–102 (1998)CrossRefGoogle Scholar
  10. Oulton R.F., Bartal G., Pile D.F.P., Zhang X.: Confinement and propagation characteristics of subwavelength plasmonic modes. New J. Phys. 10(105018), 1–14 (2008)Google Scholar
  11. Pile D.F.P.: Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index. Appl. Phys. B 81, 607–613 (2005)CrossRefADSGoogle Scholar
  12. Pile D.F.P., Ogawa T., Gramotnev D.K., Okamoto T., Haraguchi M., Fukui M., Matsuo S.: Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87(061106), 1–3 (2005)Google Scholar
  13. Pile D.F.P., Gramotnev D.K., Haraguchi M., Okamoto T., Fukui M.: Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap. J. Appl. Phys. 100(013101), 1–8 (2006)Google Scholar
  14. Pile D.F.P., Gramotnev D.K., Oulton R.F., Zhang X.: On long-range plasmonic modes in metallic gaps. Opt. Express 15, 13669–13674 (2007)CrossRefADSGoogle Scholar
  15. Qi Y., Gan D., Ma J., Cui J., Wang C., Luo X.: Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides. Appl. Phys. B 95, 807–812 (2009)CrossRefADSGoogle Scholar
  16. Vernon K.C., Gramotnev D.K., Pile D.F.P.: Channel plasmon-polariton modes in V-grooves filled with dielectric. J. Appl. Phys. 103(034304), 1–6 (2008)Google Scholar
  17. Veronis G., Fan S.: Modes of subwavelength plasmonic slot waveguides. IEEE J. Lightwave Technol. 25, 2511–2521 (2007)CrossRefADSGoogle Scholar
  18. Veronis G., Fan S.: Crosstalk between three-dimensional plasmonic slot waveguides. Opt. Express 16, 2129–2140 (2008)CrossRefADSGoogle Scholar
  19. Yan M., Qiu M.: Guided plasmon polariton at 2D metal corners. J. Opt. Soc. Am. B 24, 2333–2342 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Pouya Dastmalchi
    • 1
  • Nosrat Granpayeh
    • 1
  • Majid Rasouli Disfani
    • 1
  1. 1.Faculty of Electrical and Computer EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations