Optical and Quantum Electronics

, Volume 42, Issue 8, pp 531–540 | Cite as

Transmission characteristics in plasmonic multimode waveguides

  • André G. Edelmann
  • Stefan F. Helfert
  • Jürgen Jahns


In this article, we examine spectral transmission characteristics based on the self-imaging effect in plasmonic multimode waveguides. For the analysis, we calculate the correlation between an input field and the field in the self-imaging plane. We perform full vectorial computations using the Method of Lines as numerical method. The resulting transmission profile is discussed with regards to the attenuation, the even and odd mode sets and for several structural parameters of the plasmonic waveguide. The introduced transmission characteristic may offer the opportunity for the implementation of filtering operations in plasmonic waveguides.


Plasmonic waveguides Self-imaging effect Transmission characteristic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berini P.: Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61(15), 10484–10503 (2000)ADSCrossRefGoogle Scholar
  2. Besbes M., Hugonin J., Lalanne P., van Haver S., Janssen O., Nugrowati A., Xu M., Pereira S., Urbach H., van de Nes A., Bienstman P., Granet G., Moreau A., Helfert S., Sukharev M., Seideman T., Baida F., Guizal B., Labeke D.V.: Numerical analysis of a slit-groove diffraction problem. J. Eur. Opt. Soc. 2, 07022 (2007)CrossRefGoogle Scholar
  3. Čtyroký J., Abdelmalek F., Ecke W., Usbeck K.: Modelling of the surface plasmon resonance waveguide sensor with bragg grating. Opt. Quant. Electron. 31, 927–941 (1999)CrossRefGoogle Scholar
  4. Edelmann A.G., Helfert S.F., Jahns J.: Analysis of the self-imaging effect in plasmonic multimode waveguides. Appl. Opt. 49(7), A1–A10 (2010)ADSCrossRefGoogle Scholar
  5. Feng L., Tetz K., Slutsky B., Lomakin V., Fainman Y.: Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves. Appl. Phys. Lett. 91, 081101 (2007)ADSCrossRefGoogle Scholar
  6. Helfert S., Huneke B., Jahns J.: Self-imaging effect in multimode waveguides with longitudinal periodicity. J. Eur. Opt. Soc. 4, 09031 (2009)CrossRefGoogle Scholar
  7. Maier S.A., Atwater H.A.: Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric stuctures. J. Appl. Phys. 98, 011101 (2005)ADSCrossRefGoogle Scholar
  8. Ozbay E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)ADSCrossRefGoogle Scholar
  9. Palik E.D.: Handbook of Optical Constants of Solids. Academic Press, London (1985)Google Scholar
  10. Pregla R.: Analysis of electromagnetic Fields and Waves: The Method of Lines. Wiley, West Sussex (2008)CrossRefGoogle Scholar
  11. Pregla R., Pascher W.: The method of lines. In: Itoh, T. (ed.) Numerical Techniques for Microwave and Millimeter Wave Passive Structures, pp. 381–446. Wiley, New York (1989)Google Scholar
  12. Raether H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)Google Scholar
  13. Soldano L.B., Pennings E.C.M.: Optical multi-mode interference device based on self-imaging: principles and applications. J. Lightwave Technol. 13, 615–627 (1995)ADSCrossRefGoogle Scholar
  14. Zia R., Selker M.D., Catrysse P.B., Brongersma M.L.: Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12), 2442–2446 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • André G. Edelmann
    • 1
  • Stefan F. Helfert
    • 1
  • Jürgen Jahns
    • 1
  1. 1.FernUniversität in HagenHagenGermany

Personalised recommendations