Advertisement

Optical and Quantum Electronics

, Volume 42, Issue 8, pp 499–509 | Cite as

Characterization of silicon nanophotonic devices using the finite element method

  • D. M. H. Leung
  • B. M. A. Rahman
  • N. Kejalakshmy
  • K. T. V. Grattan
Article
  • 74 Downloads

Abstract

The Poynting vector and the full-vectorial H and E-field profiles are considered for use in nanoscale silicon waveguides in this article. This paper reveals that the mode profile of a circular silicon nanowire is not circular and also has a strong axial field component. From the analysis, the characteristics of single mode operation and the vector field profiles of both circular and planar silicon nanowires are presented. The modal birefringence of rectangular silicon nanowires and power density in low-index region of a slot-type waveguide and designs of a compact polarization rotator are also presented in this work.

Keywords

Numerical analysis Waveguides Silicon Nanophotonics devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G.P.: Nonlinear Fibre Optics, 3rd edn. Academic Press, London (2001)Google Scholar
  2. Driscoll J.B., Liu X., Yasseri S., Hsieh I., Dadap J.I., Osgood R.M. Jr: Large longitudinal electric fields (Ez) in silicon nanowire waveguides. Opt. Express 17, 2797–2804 (2009)ADSCrossRefGoogle Scholar
  3. ISO 1114.: Laser and laser related equipment—test methods for laser beam widths, divergence and beam propagation ratios. International Organization for Standardization, Geneva, Switzerland (2005)Google Scholar
  4. Kejalakshmy N., Agrawal A., Aden Y., Leung D.M.H., Rahman B.M.A., Grattan K.T.V.: Characterization of silicon nanowire by use of full-vectorial finite element method. Appl. Opt. 49, 3173–3181 (2010)ADSCrossRefGoogle Scholar
  5. Lipson M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. IEEE J. Lightwave Technol. 23, 4222–4238 (2005)ADSCrossRefGoogle Scholar
  6. Muellner P., Wellenzohn M., Hainberger R.: Nonlinearity of optimized silicon photonic slot waveguides. Opt. Express 17, 9282–9287 (2009)ADSCrossRefGoogle Scholar
  7. Rahman B.M.A., Davies J.B.: Analysis of optical waveguide discontinuities. IEEE J. Lightwave Technol. 6, 52–57 (1988)ADSCrossRefGoogle Scholar
  8. Rahman B.M.A., Davies J.B.: Finite-element solution of integrated optical waveguide. IEEE J. Lightwave Technol. 2, 682–688 (1984a)ADSCrossRefGoogle Scholar
  9. Rahman B.M.A., Davies J.B.: Penalty function improvement of waveguide solution by finite elements. Microw. Theory Tech. IEEE Trans. 32, 922–928 (1984b)ADSCrossRefGoogle Scholar
  10. Tong L., Lou J., Mazur E.: Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguide. Opt. Express 12, 1025–1035 (2004)ADSCrossRefGoogle Scholar
  11. Turner C., Manolatou C., Schmidt B.S., Lipson M., Foster M.A., Sharping J.E., Gaeta A.L.: Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006)ADSCrossRefGoogle Scholar
  12. Zhan Q., Lager J.R.: Focus shaping using cylindrical vector beams. Opt. Express 10, 324–333 (2002)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • D. M. H. Leung
    • 1
  • B. M. A. Rahman
    • 1
  • N. Kejalakshmy
    • 1
  • K. T. V. Grattan
    • 1
  1. 1.School of Engineering and Mathematical SciencesCity University LondonLondonUK

Personalised recommendations