Advertisement

Optical and Quantum Electronics

, Volume 41, Issue 5, pp 385–396 | Cite as

Cylindrical vector axisymmetric Bessel-modulated Gaussian beam

  • Xiumin Gao
  • Qiufang Zhan
  • Jinsong Li
  • Song Hu
  • Jian Wang
  • Songlin Zhuang
Article

Abstract

Focusing properties of the cylindrical vector axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) in high numerical aperture system is investigated theoretically by vector diffraction theory. Results show that intensity distribution in focal region can be altered considerably by beam parameter μ and polarization angle. Polarization angle may adjust transverse intensity distribution, for instance from one focal spot to one ring shape. While μ alters axial intensity distribution remarkably, focal splitting may occur with tunable focal shift, and real value μ also may induce local intensity minimum. For certain case, with increasing imaginary value μ, transverse focal spot shrinks accompanied with higher full width half maximum of axial intensity distribution.

Keywords

Focusing properties Vector beam Axisymmetric Bessel-modulated Gaussian beam Vector diffraction theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belafhal A., Dalil-Essakali L.: Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system. Opt. Commun. 177, 181–188 (2000)CrossRefADSGoogle Scholar
  2. Caron C.F.R., Potvliege R.M.: Bessel-modulated Gausian beams with quadratic radial dependence. Opt. Commun. 164, 83–93 (1999)CrossRefADSGoogle Scholar
  3. Gao X., Fei Z., Xu W., Gan F.: Focus splitting induced by a pure phase-shifting podizer. Opt. Commun. 239, 55–59 (2004)CrossRefADSGoogle Scholar
  4. Gao X., Hu S., Gu H., Wang J.: Focal shift of three-portion concentric piecewise cylindrical vector beam. Optik. 120, 519–523 (2009)ADSGoogle Scholar
  5. Gu M.: Advanced Optical Imaging Theory. Springer, Heidelberg (2000)Google Scholar
  6. Hricha Z., Belafhal A.: Focal shift in the axisymmetric Bessel-modulated Gaussian beam. Opt. Commun. 255, 235–240 (2005)CrossRefADSGoogle Scholar
  7. Lü B., Wang X.: Kurtosis parameter of Bessel-modulated Gaussian beams propagating through ABCD optical systems. Opt. Commun. 204, 91–97 (2002)CrossRefADSGoogle Scholar
  8. Mei Z., Zhao D., Wei X., Jing F., Zhu Q.: Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture. Optik. 116, 521–526 (2005)ADSGoogle Scholar
  9. Visscher K., Brakenhoff G.J.: Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers. Optik. 89, 174–180 (1992)Google Scholar
  10. Wang X., Lü B.: The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams. Opt. Quant. Electron. 34, 1071–1077 (2002)CrossRefGoogle Scholar
  11. Wang X., Lü B.: The beamwidth of Bessel-modulated Gaussian beams. J. Mod. Opt. 50, 2107–2115 (2003)ADSGoogle Scholar
  12. Youngworth K.S., Brown T.G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express. 7, 77–87 (2000)CrossRefADSGoogle Scholar
  13. Zhan Q., Leger J.R.: Focus shaping using cylindrical vector beams. Opt. Express. 10, 324–330 (2002)ADSGoogle Scholar
  14. Zhan Q.: Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Xiumin Gao
    • 1
  • Qiufang Zhan
    • 2
  • Jinsong Li
    • 3
  • Song Hu
    • 1
  • Jian Wang
    • 1
  • Songlin Zhuang
    • 4
  1. 1.Electronics and Information CollegeHangzhou Dianzi UniversityHangzhouChina
  2. 2.China Standard Software Co., LtdShanghaiP. R. China
  3. 3.College of Optics and ElectronicsChina Jiliang UniversityHangzhouChina
  4. 4.University of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations