Advertisement

Optical and Quantum Electronics

, Volume 41, Issue 4, pp 315–326 | Cite as

Multiplexer–Demultiplexer based on nematic liquid crystal photonic crystal fiber coupler

  • M. F. O. Hameed
  • S. S. A. Obayya
  • R. J. Wiltshire
Article

Abstract

A novel design of Multiplexer–Demultiplexer (MUX–DEMUX) based on index guiding soft glass nematic liquid crystal (NLC) based photonic crystal fiber coupler is proposed and analyzed. The simulation results are obtained using the full vectorial finite difference method as well as the full vectorial finite difference beam propagation method. The numerical results reveal that the proposed MUX–DEMUX of length 3.265 mm can provide low crosstalk better than −20dB with great bandwidths of 40 and 24 nm around the wavelengths of 1.3 and 1.55 μm, respectively. In addition, the reported MUX–DEMUX has a tolerance of ±3% in its length which makes the design more robust to the perturbation introduced during the fabrication process.

Keywords

Photonic crystal fibers Soft glass Nematic liquid crystal Finite difference method Beam propagation method Couplers and multiplexers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya B.R., Baldwin K.W., Rogers J.A., Huang C.C., Pindak R.: In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time. Appl. Phys. Lett. 81(27), 5243–5245 (2002)CrossRefADSGoogle Scholar
  2. Benabid F.: Hollow-core photonic bandgap fibre: new light guidance for new science and technology. Phil. Trans. R. Soc. A 364, 3439–3462 (2006)MATHCrossRefADSGoogle Scholar
  3. Birks T.A., Knight J.C., Russell P.St.J.: Endlessly single-mode photonic crystal fibre. Opt. Lett. 22, 961–963 (1997)CrossRefADSGoogle Scholar
  4. Campbell S., McPhedran R.C., Martijn de Sterke C., Botten L.C.: Differential multipole method for microstructured optical fibers. J. Opt. Soc. Am. B 21(11), 1919–1928 (2004)ADSGoogle Scholar
  5. Chen M.Y., Zhou J.: Polarization-independent splitter based on all-solid silica-based photonic-crystal fibers. J. Light. Technol. 24, 5082–5086 (2006)CrossRefADSGoogle Scholar
  6. Fallahkhair A.B., Li K.S., Murphy T.E.: Vector finite difference modesolver for anisotropic dielectric waveguides. J. Light. Technol. 26(11), 1423–1431 (2008)CrossRefADSGoogle Scholar
  7. Fang D., Yan Q.L., Shin T.W.: Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 85(12), 2181–2183 (2004)CrossRefGoogle Scholar
  8. Florous N., Saitoh K., Koshiba M.: A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express 13, 7365–7373 (2005)CrossRefADSGoogle Scholar
  9. Florous N.J., Saitoh K., Koshiba M.: Synthesis of polarization-independent splitters based on highly birefringent dual-core photonic crystal fiber platforms. Photon. Technol. Lett. 18, 1231–1233 (2006)CrossRefADSGoogle Scholar
  10. Gander M.J., McBride R., Jones J.D.C., Mogilevtsev D., Birks T.A., Knight J.C., Russell P.St.J.: Experimental measurement of group velocity in photonic crystal fiber. Electron. Lett. 35, 63–64 (1998)CrossRefGoogle Scholar
  11. Haakestad M.W., Alkeskjold T.T., Nielsen M., Scolari L., Riishede J., Engan H.E., Bjarklev A.: Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17(4), 819–821 (2005)CrossRefADSGoogle Scholar
  12. Huang W.P., Xu C.L.: Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE J. Quan. Electro. 29(10), 2639–2649 (1993)CrossRefADSGoogle Scholar
  13. Huang Y., Xu Y., Yariv A.: Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182–5184 (2004)CrossRefADSGoogle Scholar
  14. Knight J.C., Birks T.A., Cregan R.F., Russell P.St.J., de Sandro J.-P.: Large mode area photonic crystal fiber. Electron. Lett. 34, 1347–1348 (1998)CrossRefGoogle Scholar
  15. Li J., Shin-Tson W., Stefano B., Riccardo M., Sandro F.: Infrared refractive indices of liquid crystals. J. Appl. Phys. 97, 073501–073505 (2005)CrossRefADSGoogle Scholar
  16. Leong J.Y.Y.: Fabrication and applications of lead-silicate glass holey fiber for 1-1.5microns: nonlinearity and dispersion trade offs. Ph.D. Thesis, University of Southampton, Faculty of engineering, science and mathematics Optoelectronics research centre (2007)Google Scholar
  17. Mangan B.J., Knight J.C., Birks T.A., Russell P.St.J., Greenaway A.H.: Experimental study of dual core photonic crystal fiber. Electron. Lett. 36, 1358–1359 (2000)CrossRefGoogle Scholar
  18. Montanari E., Selleri S., Vincetti L., Zoboli M.: Finite element full vectorial propagation analysis for three dimensional z-varying optical waveguides. J. Light. Technol. 16, 703–714 (1998)CrossRefADSGoogle Scholar
  19. Nielsen K., Noordegraaf D., Sørensen T., Bjarklev A., Hansen T.P.: Selective filling of photonic crystal fibers. J. Opt. A Pure Appl. Opt. 7(8), L13–L20 (2005)CrossRefADSGoogle Scholar
  20. Obayya S.S.A., Azizur Rahman B.M., El-Mikati H.A.: New full vectorial numerically efficient propagation algorithm based on the finite element method. J. Light. Technol. 18(3), 409–415 (2000)CrossRefADSGoogle Scholar
  21. Obayya S.S.A., Rahman B.M.A., Grattan K.T.V., El-Mikati H.A.: Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides. J. Light. Technol. 20, 1054–1060 (2001)CrossRefGoogle Scholar
  22. Obayya S.S.A., Azizur Rahman B.M., Grattan T.V., El-Mikati H.A.: Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides. J. Light. Technol. 20, 1054 (2002)CrossRefADSGoogle Scholar
  23. Ren G., Shum P., Yu X., Hu J., Wang G., Gong Y.: Polarization dependent guiding in liquid crystal filled photonic crystal fibers. Opt. Commun. 281, 1598–1606 (2008)CrossRefADSGoogle Scholar
  24. Saitoh K., Sato Y., Koshiba M.: Coupling characteristics of dual-core photonic crystal fiber couplers. Opt. Express 11, 3188–3195 (2003)ADSCrossRefGoogle Scholar
  25. Xiao L., Jin W., Demokan M.S., Ho H.L., Hoo Y.L., Zhao C.: Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt. Express 13(22), 9014–9022 (2005)CrossRefADSGoogle Scholar
  26. Xiao J., Sun X.: A Modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles. Opt. Commun. 266(2), 505–511 (2006)CrossRefADSGoogle Scholar
  27. Zhang L., Yang C.: Polarization-dependent coupling in twin-core photonic crystal fibers. J. Light. Technol. 22, 1367–1373 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • M. F. O. Hameed
    • 1
  • S. S. A. Obayya
    • 1
  • R. J. Wiltshire
    • 1
  1. 1.Integrated Communications Research Centre, Faculty of Advanced TechnologyUniversity of GlamorganPontypriddUK

Personalised recommendations