Optical and Quantum Electronics

, Volume 40, Issue 13, pp 1033–1042 | Cite as

Pure anomalous Hall effect in nonmagnetic zinc-blende semiconductors



We report the experimental observation of the pure anomalous Hall effect (AHE) in nonmagnetic zinc-blende semiconductors without application of the external magnetic fields. The AHE without any contribution from the ordinary Hall current originates from nonequilibrium magnetization induced by spin-polarized electrons generated by the circularly polarized light (σ). We measure the pure AHE as a function of the external bias, crystal temperature and pumping σ-photon energy. The results of their dependences are discussed.


Semiconductors Hall effect Polarized light 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Awschalom, D.D., Loss, D., Samarth, N. (eds): Semiconductor Spintronics and Quantum Computation. Springer, Berlin (2002)Google Scholar
  2. Barry E.A., Kiselev A.A., Kim K.W.: Electron spin relaxation under drift in GaAs. Appl. Phys. Lett. 82, 3686–3688 (2003). doi: 10.1063/1.1578180 CrossRefADSGoogle Scholar
  3. Berger I.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559–4566 (1970). doi: 10.1103/PhysRevB.2.4559 CrossRefADSGoogle Scholar
  4. Chazalviel J.-N.: Spin-dependent Hall effect in semiconductors. Phys. Rev. B 11, 3918–3934 (1975). doi: 10.1103/PhysRevB.11.3918 CrossRefADSGoogle Scholar
  5. Dresselhaus G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955). doi: 10.1103/PhysRev.100.580 MATHCrossRefADSGoogle Scholar
  6. D’yakonov M.I., Perel V.I.: Possibility of orienting electron spins with current. Sov. Phys. JETP 33, 1053–1055 (1971)ADSGoogle Scholar
  7. Hägele D., Oestreich M., Rühle W.W., Nestle N., Eberl K.: Spin transport in GaAs. Appl. Phys. Lett. 73, 1580–1582 (1998). doi: 10.1063/1.122210 CrossRefADSGoogle Scholar
  8. Hall H.E.: On the possibility of transverse currents in ferromagnets. Philos. Mag. 12, 157–160 (1881)Google Scholar
  9. Miah M.I.: Injection and detection of spin current and spin Hall effect in GaAs. Mater. Lett. 60, 2863–2866 (2006). doi: 10.1016/j.matlet.2006.02.014 CrossRefGoogle Scholar
  10. Mott N.F., Massey H.S.W.: The Theory of Atomic Collisions. 3rd edn. Clarendon Press, Oxford (1965)Google Scholar
  11. Pierce D.T., Meier F.: Photoemission of spin-polarized electrons from GaAs. Phys. Rev. B 13, 5484–5500 (1976). doi: 10.1103/PhysRevB.13.5484 CrossRefADSGoogle Scholar
  12. Pikus G.E., Titkov A.N.: Optical orientation. In: Meier, F., Zakharchenya, B.P. (eds) Modern Problems in Condensed Matter Science, North-Holland, Amsterdam (1984)Google Scholar
  13. Sanada, H., Arata, I., Ohno, Y., Chen, Z., Kayanuma, K., Oka, Y., Matsukura, F., Ohno, H.: In: The second international conference on physics and application of spin related phenomena in semiconductors, Würzburg, Germany (2002)Google Scholar
  14. Žutić I., Fabian J., Sarma S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). doi: 10.1103/RevModPhys.76.323 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Nanoscale Science and Technology CentreGriffith UniversityNathan, BrisbaneAustralia
  2. 2.School of Biomolecular and Physical SciencesGriffith UniversityNathan, BrisbaneAustralia
  3. 3.Department of PhysicsUniversity of ChittagongChittagongBangladesh

Personalised recommendations