Optical and Quantum Electronics

, Volume 40, Issue 11–12, pp 837–852 | Cite as

Refractive index profile optimisation for the design of optical fibres

  • R. W. Smink
  • B. P. de Hon
  • M. Bingle
  • R. Mussina
  • A. G. Tijhuis
Open Access


Owing to advanced manufacturing techniques, it is possible to produce cylindrical single-mode fibres with nearly arbitrary refractive index profiles. For the design of optical fibres automated optimisation schemes have yet to be exploited. We have employed deterministic local, and stochastic global optimisation schemes for the minimisation of a cost function based on dispersion, dispersion slope, macro-bending losses and mode-field diameter, on the space of continuous piecewise linear dopant concentration profiles. For the local schemes (modified and quasi Newton), it appears possible to select a few initial profiles, such that the optimisation results are close to the “global optima” (within 8%), found using global schemes (simulated annealing and differential evolution), while reducing computation times significantly (minutes instead of days). For the local schemes, the cost function gradient is required. Fréchet derivatives are more efficient than finite-difference approximations. A sensitivity analysis provides useful information for manufacturers regarding the required profile accuracy. A comparison of our optimised fibre designs with commercially available optical fibres demonstrates that existing fibres can be improved.


Single-mode optical fibres Optimisation Sensitivity analysis Numerical modelling 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Bingle, M., de Hon, B.P., van Stralen, M.J.N.: Electromagnetic modelling and optimisation for the design of single-mode optical fibres. In: 2001 URSI International Symposium of Electromagnetic Theory, vol. 307.2/MN06.20, pp. 515–517. Victoria, CA, 13–17 May 2001Google Scholar
  2. de Hon B.P.: A modal impedance-angle formalism: rigorous proofs for optical fiber mode counting and bracketing. Radio Sci. 38(2), 8013 (2003)CrossRefADSGoogle Scholar
  3. de Hon B.P., Bingle M.: A modal impedance-angle formalism: schemes for accurate graded-index bent-slab calculations and optical fiber mode counting. Radio Sci. 38(2), 8012 (2003)CrossRefADSGoogle Scholar
  4. Dil J.G., Blok H.: Propagation of electromagnetic surface waves in a radially inhomogeneous optical waveguide. Opt. Quant. Electron. 5, 415–428 (1973)Google Scholar
  5. Fletcher R.: A new low rank quasi-Newton update scheme for nonlinear programming. In: Ceragioli, F., Dontchev, A., Furuta, H., Marti, K., Pandolfi, L. (eds) IFIP International Federation for Information Processing, System Modeling and Optimization, vol 199, pp. 275–293. Springer, Boston (2006)Google Scholar
  6. Fletcher, R., Leyffer, S.: User manual for FilterSQP. University of Dundee Numerical Analysis Report NA/181. April 1998, version1, June 1998, updated March 1999
  7. Gill P.E., Murray W.: Numerical Methods for Constrained Optimisation. Academic Press, London (1974)Google Scholar
  8. Goffe, W., Ferrier, G., Rogers, J.: Global optimization of statistical functions with simulated annealing. J. Econom. 60(1/2), 65–100 (1994). Google Scholar
  9. Hermann W., Wiechert D.U.: Refractive index of doped and undoped PCVD bulk silica. Mat. Res. Bull. 24(9), 1083–1097 (1989)CrossRefGoogle Scholar
  10. Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefADSMathSciNetGoogle Scholar
  11. Meyberg K., Vachenauer P.: Höhere Mathematik. Springer, Berlin (1991)MATHGoogle Scholar
  12. Mishra, S.K.: Global optimization by differential evolution and particle swarm methods: evaluation on some benchmark functions (2006a). Accessed 30 September 2006
  13. Mishra, S.K.: Performance of the barter, the differential evolution and the simulated annealing methods of global optimization on some new and some old test functions (2006b). Accessed 1 November 2006
  14. Nocedal J., Wright S.J.: Numerical Optimization. Springer-Verlag, New York (1999)MATHCrossRefGoogle Scholar
  15. Numerical Algorithms Group Ltd.: NAG Fortran Library Mark 20 (2001).
  16. Rahmat-Samii, Y.,Michielssen, E. (eds.): Electromagnetic Optimization by Genetic Algorithms.Wiley Series in Microwave and Optical Engineering. Wiley, New York (1999)Google Scholar
  17. Smink R.W., de Hon B.P., Tijhuis A.G.: Bending loss in optical fibers-a full-wave approach. J. Opt. Soc. Am. B 24(10), 2610–2618 (2007)CrossRefADSGoogle Scholar
  18. Snyder A.W., Love J.D.: Optical Waveguide Theory. Chapman and Hall, London (1977)Google Scholar
  19. Storn R., Price K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global. Optim. 11(4), 341–359 (1997)MATHCrossRefMathSciNetGoogle Scholar
  20. Weile D., Michielssen E.: Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans. Antennas Propag. 45(3), 343–353 (1997)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • R. W. Smink
    • 1
  • B. P. de Hon
    • 1
  • M. Bingle
    • 2
  • R. Mussina
    • 1
  • A. G. Tijhuis
    • 1
  1. 1.Faculty of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.EM Software & Systems—SA(Pty) Ltd.StellenboschSouth Africa

Personalised recommendations