Optical and Quantum Electronics

, Volume 40, Issue 13, pp 991–1003 | Cite as

Complete analysis of photonic crystal fibers by full-vectorial 2D-FDTD method



In this paper, an extended finite difference time domain (FDTD) algorithm for the full-vectorial analysis of photonic crystal fibers has been derived. For achieving a good convergence and high accuracy, a kind of modified conformal FDTD method has been applied. An anisotropic perfectly matched layer for truncation of boundary conditions has been introduced. Material and chromatic dispersions are numerically investigated for the photonic crystal fibers with different dimensions and geometrical parameters and different dispersion behaviors are exhibited.


Finite-difference time-domain (FDTD) Photonic crystal fibers (PCFs) Chromatic dispersion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brechet F., Marcou J., Pagnoux D., Roy P.: Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method. Opt. Fiber Technol. 6, 181–191 (2000) doi: 10.1006/ofte.1999.0320 CrossRefADSGoogle Scholar
  2. Cherin, A.H.: An Introduction to Optical Fibers. Bell Lab. (1983)Google Scholar
  3. Jacquin O., Benyattou T., Desieres Y., Orobtchouk R., Cachard A., Benech P.: Diffraction effects in guided photonic band gap structure. Opt. Quantum Electron. 32, 935–945 (2000) doi: 10.1023/A:1007087016802 CrossRefGoogle Scholar
  4. Jiang W., Shen L., Chen D., Chi H.: An extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers. J. Lightwave Technol. 24, 4417–4423 (2006) doi: 10.1109/JLT.2006.883651 CrossRefADSGoogle Scholar
  5. Koshiba M., Saitoh K.: Applicability of classical optical fiber theories to holey fibers. Opt. Lett. 29, 1739–1741 (2004) doi: 10.1364/OL.29.001739 CrossRefADSGoogle Scholar
  6. Laegsgaard J., Bjarklev A., Libori S.E.B.: Chromatic dispersion in photonic crystal fibers: Fast and accurate scheme for calculation. J. Opt. Soc. Am. B 20, 443–448 (2003) doi: 10.1364/JOSAB.20.000443 CrossRefADSGoogle Scholar
  7. Malitson L.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1208 (1965) doi: 10.1364/JOSA.55.001205 CrossRefADSGoogle Scholar
  8. Navarro A., Nuhez M.J., Martin E.: Study of TE and TM modes in dielectric resonators by a finite difference time domain method coupled with the discrete Fourier transform. IEEE Trans. Microw. Theory Tech. 39, 14–17 (1991) doi: 10.1109/22.64599 CrossRefGoogle Scholar
  9. Qiu M., He S.: Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions. Phys. Rev. B Condens. Matter 61, 12871–12876 (2000) doi: 10.1103/PhysRevB.61.12871 ADSGoogle Scholar
  10. Saitoh K., Koshiba M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38, 927–933 (2002) doi: 10.1109/JQE.2002.1017609 CrossRefADSGoogle Scholar
  11. Sang X., Chu P.L., Yu C.: Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications. Opt. Quantum Electron. 37, 965–994 (2005) doi: 10.1007/s11082-005-8338-4 CrossRefGoogle Scholar
  12. Taflove, A., Hagness, S.C.(2005). Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Boston, Artech House (2005)Google Scholar
  13. Yee K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966) doi: 10.1109/TAP.1966.1138693 MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations