Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method

  • Giannis D. Ziogos
  • Emmanouil E. Kriezis


A full-vector finite-element beam propagation method in 3-D is introduced for the simulation of light propagation in liquid crystal (LC) devices. The three electric field components are expressed in terms of mixed finite elements, providing the correct enforcement of boundary conditions. Moreover, the optical dielectric tensor of the medium can have all its nine elements nonzero, thus allowing the LC director to have an arbitrary orientation. A photonic crystal fiber with a LC infiltrated core and a homeotropic to multi-domain cell are analyzed. Comparison with other existing simulation techniques is provided, in order to validate the accuracy of the proposed method.


Beam propagation method Liquid crystals Mixed finite elements 


  1. Amarasinghe N., Gartland E. Jr, Kelly J.: Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations. J. Opt. Soc. Am. A 21, 1344–1361 (2004)CrossRefADSGoogle Scholar
  2. Berreman D.: Optics in stratified and anisotropic media: 4 × 4 matrix formulation. J. Opt. Soc. Am. 62, 505–510 (1972)CrossRefADSGoogle Scholar
  3. Chen J., Jungling S.: Computation of higher-order waveguide modes by imaginary-distance beam propagation method. Opt. Quant. Electron. 26, 199–205 (1994)CrossRefGoogle Scholar
  4. Davidson A., Elston S.: Three-dimensional beam propagation method for the optical path of light through a nematic liquid crystal. J. Mod. Opt. 53, 979–989 (2006)MATHCrossRefADSGoogle Scholar
  5. Gundu K., Brio M., Moloney J.: A mixed high-order vector finite element method for waveguides: convergence and spurious mode studies. Int. J. Numer. Model. 18, 351–364 (2005)MATHCrossRefGoogle Scholar
  6. Jin J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)MATHGoogle Scholar
  7. Johnson S., Joannopoulos J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)ADSCrossRefGoogle Scholar
  8. Kawano K., Kitoh T.: Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger Equation. Wiley, New York (2001)Google Scholar
  9. Kriezis E., Elston S.: Light wave propagation in periodic tilted liquid crystal structures: a periodic beam propagation method. Liq. Cryst. 26, 1663–1669 (1999)CrossRefGoogle Scholar
  10. Kriezis E., Elston S.: Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method. Opt. Commun. 177, 69–77 (2000a)CrossRefADSGoogle Scholar
  11. Kriezis E., Elston S.: Wide-angle beam propagation method for liquid-crystal device calculations. Appl. Opt. 39, 5707–5714 (2000b)CrossRefADSGoogle Scholar
  12. Kriezis E., Papagiannakis A.: A three-dimensional full vectorial beam propagation method for z-dependent structures. IEEE J. Quantum Electron. 33, 883–890 (1997)CrossRefADSGoogle Scholar
  13. Kriezis E., Newton C., Spiller T., Elston S.: Three-dimensional simulations of light propagation in periodic liquid-crystal microstructures. Appl. Opt. 41, 5346–5356 (2002)CrossRefADSGoogle Scholar
  14. Li D., Van Brug H., Frankena H.: Application of a fully vectorial beam propagation method. Opt. Quant. Electron. 29, 313–322 (1997)CrossRefGoogle Scholar
  15. Lien A.: A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays. Liq. Cryst. 22, 171–175 (1997)CrossRefGoogle Scholar
  16. Obayya S., Rahman B., El-Mikati H.: New full-vectorial numerically efficient propagation algorithm based on the finite element method. J. Lightwave Technol. 18, 409–415 (2000)CrossRefADSGoogle Scholar
  17. Obayya S., Rahman B., Grattan K., El-Mikati H.: Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides. J. Lightwave Technol. 20, 1054–1060 (2002)CrossRefADSGoogle Scholar
  18. Panasyuk G., Allender D.: Model for the director and electric field in liquid crystal cells having twist wall or disclination lines. J. Appl. Phys. 91, 9603–9612 (2002)CrossRefADSGoogle Scholar
  19. Panasyuk G., Kelly J., Gartland E., Allender D.: Geometrical optics approach in liquid crystal films with three-dimensional director variations. Phys. Rev. E 67, 041702 (2003)CrossRefADSGoogle Scholar
  20. Panasyuk G., Kelly J., Bos P., Gartland E. Jr, Allender D.: The geometrical optics approach for multidimensional liquid crystal cells. Liq. Cryst. 31, 1503–1515 (2004)CrossRefGoogle Scholar
  21. Saitoh K., Koshiba M.: Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. J. Lightwave Technol. 19, 405–413 (2001)CrossRefADSGoogle Scholar
  22. Schulz D., Gingener C., Bludsuweit M., Voges E.: Mixed finite element beam propagation method. J. Lightwave Technol. 16, 1336–1341 (1998)CrossRefADSGoogle Scholar
  23. Selleri S., Vincetti L., Cucinotta A.: Finite element method resolution of non-linear Helmholtz equation. Opt. Quant. Electron. 30, 457–465 (1998)CrossRefGoogle Scholar
  24. Selleri S., Vincetti L., Zoboli M.: Full-vector finite-element beam propagation method for anisotropic optical device analysis. IEEE J. Quantum Electron. 36, 1392–1401 (2000)CrossRefADSGoogle Scholar
  25. Tang S., Kelly J.: An alternative description of multi-dimensional optics in liquid crystals and uniaxial media solved by operators and sparse linear systems. Mol. Cryst. Liq. Cryst. 478, 175–199 (2007)CrossRefGoogle Scholar
  26. Teixeira F., Chew W.: General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microw. Guided Wave Lett. 8, 223–225 (1998)CrossRefGoogle Scholar
  27. Tsuji Y., Koshiba M., Shiraishi T.: Finite element beam propagation method for three-dimensional optical waveguide structures. J. Lightwave Technol. 15, 1728–1734 (1997)CrossRefADSGoogle Scholar
  28. Volakis J., Chatterjee A., Kempel L.: Finite Element Method for Electromagnetics. IEEE Press, New York (1998)MATHGoogle Scholar
  29. Wang X., Wang B., Bos P., Anderson J., Pouch J., Miranda F.: Finite-difference time-domain simulation of a liquid-crystal optical phased array. J. Opt. Soc. Am. A 22, 346–354 (2005)MATHCrossRefADSGoogle Scholar
  30. Wang Q., Farell G., Semenova Y.: Modeling liquid-crystal devices with the tree-dimensional full-vector beam propagation method. J. Opt. Soc. Am. A 23, 2014–2019 (2006)CrossRefADSGoogle Scholar
  31. Xu C., Huang W., Chrostowski J., Chaudhuri C.: A full-vectorial beam propagation method for anisotropic waveguides. J. Lightwave Techol. 12, 1926–1931 (1994)CrossRefADSGoogle Scholar
  32. Zografopoulos D., Kriezis E., Tsiboukis T.: Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance. Opt. Express 14, 914–925 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations