Optical and Quantum Electronics

, Volume 40, Issue 8, pp 535–550 | Cite as

An improved transmission line laser model for multimode laser diodes incorporating thermal effects

  • M. Ganesh Madhan
  • R. Neelakandan


An improved transmission line model to study the thermal effects in semiconductor laser diodes is reported in this paper. The temperature effects in the laser characteristics are obtained by incorporating temperature dependent gain and carrier density equations for the laser cavity. These primary factors are introduced in the regular transmission line laser model to estimate the static and dynamic characteristics of an 1.3μm InGaAsP double heterostructure laser diode. The results show good agreement with the experimental observation and solution of rate equations referred in the literature. The key feature of this model is that it provides the laser spectra at various temperatures. Based on the model, time dependent evolution of optical spectrum, temperature dependent optical output and frequency chirp are evaluated. Further the distribution of photon and electron density within the cavity is also determined.


Modeling Semiconductor lasers Spectral analysis Thermal effects Transmission line model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal G.P.: Fiber Optic Communication Systems. Wiley, Newyork (2002)Google Scholar
  2. Ait-Sadi R., Lowery A.J., Tuck B.: Two-dimensional temperature modelling of DH laser diodes using the transmission-line modelling—(TLM) method. IEE Proc. Sci. Meas. Technol. 141(I), 7–14 (1994) doi: 10.1049/ip-smt:19949585 CrossRefGoogle Scholar
  3. Donal M., Byrne M., Keating B.A.: A laser diode model based on temperature dependent rate equations. IEEE Photon. Technol. Lett. 1(11), 356–359 (1989) doi: 10.1109/68.43375 CrossRefGoogle Scholar
  4. Ghafouri Shiraz H.: The Principles of Semiconductor Laser Diodes and Amplifiers. Imperial College Press, London (2004)Google Scholar
  5. Ita M., Kimura T.: Stationary and transient thermal properties of semiconductor laser diodes. IEEE J. Quantum Electron. 17(5), 787–795 (1981) doi: 10.1109/JQE.1981.1071174 CrossRefADSGoogle Scholar
  6. Joyce W.B., Dixon R.W.: Thermal resistance of hetero-structure lasers. J. Appl. Phys. 46(2), 855–866 (1975) doi: 10.1063/1.321657 CrossRefADSGoogle Scholar
  7. Li X., Huang W.P.: Simulation of DFB semiconductor lasers incorporating thermal effects. IEEE J. Quantum Electron. 31(10), 1848–1855 (1995) doi: 10.1109/3.466060 CrossRefADSGoogle Scholar
  8. Li W., Li X., Huang W.P.: A traveling-wave model of laser diodes with consideration for thermal effects. Opt. Quantum Electron. 36, 709–724 (2004) doi: 10.1023/B:OQEL.0000039613.03840.64 CrossRefGoogle Scholar
  9. Lowery A.J.: New dynamic semiconductor laser model based on the transmission-line modeling method. IEE Proc. 134(5), 281–289 (1987)Google Scholar
  10. Lowery A.J.: New dynamic model for External cavity semiconductor lasers. IEE Proc. 136(4), 229–236 (1989)Google Scholar
  11. Lowery A.J.: New dynamic model for multimode chirp in DFB semiconductor lasers. IEE Proc. 137(5), 293–300 (1990)Google Scholar
  12. Lowery A.J., Hewitt D.F.: Large-signal dynamic model for gain-coupled DFB lasers based on the transmission-line laser model. IEE. Electron. Lett. 28(21), 1959–1960 (1992) doi: 10.1049/el:19921256 CrossRefGoogle Scholar
  13. Lu H., Blaauw C., Makino T.: Single mode operation over a wide temperature range in 1.3 μm InGaAsP/InP distributed feedback lasers. IEEE J. Lightwave Technol. 14(5), 851–858 (1996)CrossRefADSGoogle Scholar
  14. Madhan M.G., Vaya P.R., Gunasekaran N.: Unified approach to study the thermal dynamics in multi longitudinal mode semiconductor lasers. Fiber Int. Opt. 20(2), 159–170 (2001)CrossRefGoogle Scholar
  15. Massara A.B., Williams K.A., White I.H., Penty R.V., Galbraith A., Crump P. et al.: Ridge waveguide InGaAsP lasers with uncooled 10Gbit/s operation at 70°C. IEE Electron. Lett. 35(19), 1646–1647 (1999) doi: 10.1049/el:19991117 CrossRefGoogle Scholar
  16. Olga A.L., Blumenthal D.J.: Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers. IEEE J. Lightwave Technol. 18(9), 1274–1283 (2000) doi:  10.1109/50.871706 CrossRefADSGoogle Scholar
  17. Tsang C.F., Marcenac D.D., Carroll J.E., Zhang L.M.: Comparison between ‘power matrix model’ and ‘time domain model’ in modelling large signal responses of DFB lasers. IEE Proc. Optoelectron. 141(2), 89–95 (1994)CrossRefGoogle Scholar
  18. Vaya P.R., Ravi K.: Thermal analysis of semiconductor lasers. Int. J. Optoelectron. 11(6), 361–367 (1997)Google Scholar
  19. White J.K., Blaauw C., Firth P., Aukland P.: 85°C Investigation of uncooled 10-Gb/s directly modulated InGaAsP RWG GC-DFB lasers. IEEE Photon. Technol. Lett. 13(8), 773–775 (2001) doi: 10.1109/68.935799 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Electronics Engineering, Madras Institute of Technology CampusAnna UniversityChennaiIndia

Personalised recommendations