Optical and Quantum Electronics

, Volume 40, Issue 5–6, pp 307–311 | Cite as

Design issues of 1.55 µm emitting GaInNAs quantum dots

  • Stanko Tomić


We present a theoretical study of the optical properties of GaInNAs quantum dot (QD) structures, emitting at 1.55 µm wavelength. The theoretical model is based on a 10 × 10 k · p band-anti-crossing Hamiltonian, incorporating valence, conduction and nitrogen-induced bands. We have investigated the influence of the nitrogen to the conduction band mixing, and piezoelectric field on the ground state optical matrix element. For QDs grown on GaAs substrate with a reduced amount of indium and an increased amount of nitrogen in the QD the e x polarized optical matrix element becomes on the average larger and less sensitive to the variation of both the QD shape and size than is the case of an InNAs QD. For the QD grown on InP substrate the dominant optical dipole matrix element is of the e z light polarization. Our results identify the specific In and N content in the QDs required for optimal long-wavelength emission on both substrates.


Quantum dots Dilute nitrides Telecommunications Semiconductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreev A.D. and O’Reilly E.P. (2005). Optical matrix element in InAs/GaAs quantum dots: dependence on quantum dot parameters. Appl. Phys. Lett. 87: 213106 CrossRefADSGoogle Scholar
  2. Gao Q., Buda M., Tan H.H. and Jagadish C. (2005). Room-temperature preperation of InGaAsN quantum dot lasers grown by MOCVD. Electron. Solid-State Lett. 8: G57–G59 CrossRefGoogle Scholar
  3. Kondow M., Kitatani T., Nakatsuka S., Larson M.C., Nakahara K., Yazawa Y., Okai M. and Uomi K. (1997). GaInNAs: a novel material for long-wavelength semiconductor lasers. IEEE J. Select. Topic Quantum Electron. 3: 719–730 CrossRefGoogle Scholar
  4. Liu C.Y., Yoon S.F., Sun Z.Z. and Yew K.C. (2006). High-temperature operation of self-assembled GaInNAs/GaAsN quantum-dot lasers grown by solid-source molecular-beam epitaxy. Appl. Phys. Lett. 88: 081105 CrossRefADSGoogle Scholar
  5. Makino S., Miyamoto T., Kageyama T., Nishiyama N., Koyama F. and Iga K. (2000). GaInNAs/GaAs quantum dots grown by chemical beam epitaxy. J. Cryst. Growth 221: 561–565 CrossRefADSGoogle Scholar
  6. Shan W., Walukiewicz W., Ager J.W., Haller E.E., Geisz J.F., Friedman D.J., Olson J.M. and Kurtz S.R. (1999). Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82: 1221–1224 CrossRefADSGoogle Scholar
  7. Sun Z.Z., Yoon S.F., Yew K.C., Bo B.X., Yan D.A. and Hang T.C. (2004). Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy. Appl. Phys. Lett. 85: 1469–1471 CrossRefADSGoogle Scholar
  8. Tomic S. (2006). Electronic structure of InGaAsN/GaAs(N) quantum dots by 10-band kp theory. Phys. Rev. B 73: 125348 CrossRefADSGoogle Scholar
  9. Tomic S. and O’Reilly E.P. (2005). Influence of confinement energy and band anticrossing effect on the electron effective mass in GaInNAs quantum wells. Phys. Rev. B 71: 233301 CrossRefADSGoogle Scholar
  10. Tomic S., O’Reilly E.P., Fehse R., Sweeney S.J., Adams A.R., Andreev A.D., Choulis S.A., Hosea T.J.C. and Riechert H. (2003). Theoretical and experimental analysis of 1.3 µm InGaAsN/GaAs lasers. IEEE J. Select. Topic Quantum Electron. 9: 1228 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Computational Science and Engineering DepartmentSTFC Daresbury LaboratoryCheshireUK

Personalised recommendations