Optical and Quantum Electronics

, Volume 39, Issue 12–13, pp 995–1008 | Cite as

Tailoring the dispersion properties of photonic crystal fibers

  • Jesper Lægsgaard
  • Peter J. Roberts
  • Morten Bache


Photonic crystal fibers (PCFs) have had a substantial impact on nonlinear fiber optics and shortpulsed fiber laser systems due to their novel dispersion properties. The large normal or anomalous waveguide dispersion available in such fibers opens up a number of new opportunities not accessible with standard fiber technology. In this contribution, the fundamentals of PCF dispersion are briefly reviewed along with earlier results. In addition, some of our recent work on dispersion tailoring to facilitate nonlinear processes, and dispersion control in lasers will be presented.


Photonic crystal fibers Photonic bandgap fibers Parametric processes Second-harmonic generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T.V., Hilligsoe, K.M., Nielsen, C.K., Thogersen, J., Hansen, K.P., Keiding, S.R., Larsen, J.J.: Continuous-wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths. Opt. Express 12(17), 4113–4122 (2004)CrossRefADSGoogle Scholar
  2. Argyros, A., Birks, T., Leon-Saval, S.G., Cordeiro, C.M.B., Luan, F., Russell, P.S.J.: Photonic bandgap with an index step of one percent. Opt. Express 13, 309–314 (2005)CrossRefADSGoogle Scholar
  3. Ashihara, S., Nishina, J., Shimura, T., Kuroda, K.: Soliton compression of femtosecond pulses in quadratic media. J. Opt. Soc. Am. B 19(10), 2505–2510 (2002)CrossRefADSGoogle Scholar
  4. Avdokhin, A.V., Popov, S.V., Taylor, J.R.: Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm. Opt. Express 11(3), (2003)Google Scholar
  5. Bache, M., Nielsen, H., Laegsgaard, J., Bang, O.: Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch. Opt. Lett. 31(11), 1612–1614 (2006)CrossRefADSGoogle Scholar
  6. Bache, M., Bang, O., Moses, J., Wise, F.W.: Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression. Opt. Lett. 32(17), 2490–2492 (2007)CrossRefADSGoogle Scholar
  7. Bache, M., Lægsgaard, J., Bang, O., Moses, J., Wise, F.W.: Soliton compression to ultra-short pulses using cascaded quadratic nonlinearities in silica photonic crystal fibers. In: Kalli, K. (ed.) Photonic Crystal Fibers. Proceedings of SPIE, vol. 6588, p. 65880P (2007)Google Scholar
  8. Bache, M., Moses, J., Wise, F.W.: Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities. J. Opt. Soc. Am. B, 24(10), to appear, arXiv:0706. p. 1507 (2007)Google Scholar
  9. Birks, T.A., Knight, J.C., Russell, P.St.J.: Endlessly single mode photonic crystal fibre. Opt. Lett. 22, 961–963 (1997)CrossRefADSGoogle Scholar
  10. Birks, T.A., Mogilevtsev, D., Knight, J.C., Russell, P.S.J.: Dispersion compensation using single-material fibers. IEEE Photon. Tech. Lett. 11, 674–676 (1999)CrossRefADSGoogle Scholar
  11. Chen, J.S.Y., Murdoch, S.G., Leonhardt, R., Harvey, J.D.: Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers. Opt. Express 14(20) (2006)Google Scholar
  12. Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.St.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)CrossRefGoogle Scholar
  13. de Matos, C.J.S., Taylor, J.R., Hansen, K.P.: Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber. Opt. Lett. 29(9), 983–985 (2004)CrossRefADSGoogle Scholar
  14. de Matos, C.J.S., Taylor, J.R., Hansen, T.P., Hansen, K.P., Broeng, J.: All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber. Opt. Express 11(22), 2832–2837 (2003)ADSGoogle Scholar
  15. Domachuk, P., Wolchover, N.A., Cronin-Golomb, M., Omenetto, F.G., Jang, K., Ahn, J., Wang, A., George, A.K., Knight, J.C.: Ir supercontinuum in compact tellurite pcfs. In: CLEO/QELS 2007 Technical Digest, p. CW06 (2007)Google Scholar
  16. Ferrando, A., Silvestre, E., Andrés, P., Miret, J.J., Andrés, M.V.: Designing the properties of dispersion-flattened photonic crystal fibers. Opt. Express 9, 687–697 (2001)ADSGoogle Scholar
  17. Jacobsen, R.S., Lægsgaard, J., Bjarklev, A., Hougaard, K.: Very low zero-dispersion wavelength predicted for single-mode modified-total-internal-reflection crystal fibre. J. Opt. A: Pure Appl. Opt. 6, 604–607 (2004)CrossRefGoogle Scholar
  18. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)ADSCrossRefGoogle Scholar
  19. Kazansky, P.G., Pruneri, V.: Electric-field poling of quasi-phase-matched optical fibers. J. Opt. Soc. Am. B (Opt. Phys.) 14(11), 3170–3179 (1997)CrossRefADSGoogle Scholar
  20. Knight, J.C., Birks, T.A., Russell, P.St.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)ADSGoogle Scholar
  21. Knight, J.C., Broeng, J., Birks, T.A., Russell, P.St.J.: Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)CrossRefGoogle Scholar
  22. Kuhlmey, B.T., McPhedran, R.C., de Sterke, C.M., Robinson, P.A., Renversez, G., Maystre, D.: Microstructured optical fibers: where’s the edge? Opt. Express 10(22), 1285–1290 (2002)ADSGoogle Scholar
  23. Lægsgaard, J., Bjarklev, A., Libori, S.E.B.: Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation. J. Opt. Soc. Am. B 20, 443–448 (2003)CrossRefADSGoogle Scholar
  24. Lægsgaard, J., Mortensen, N.A., Riishede, J., Bjarklev, A.: Material effects in airguiding photonic bandgap fibers. J. Opt. Soc. Am. B 20, 2046–2051 (2003)CrossRefADSGoogle Scholar
  25. Lim, H., Wise, F.W.: Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber. Opt. Express 12(10), 2231–2235 (2004)CrossRefADSGoogle Scholar
  26. Lim, H., Ilday, F.O., Wise, F.W.: Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control. Opt. Express 10(25), 1497–1502 (2002)ADSGoogle Scholar
  27. Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tunnermann, A.: All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber. Opt. Express 11(24), 3332–3337 (2003)ADSCrossRefGoogle Scholar
  28. Liu, X., Qian, L., Wise, F.W.: High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2)(2) nonlinearity. Opt. Lett. 24(23), 1777–1779 (1999)CrossRefADSGoogle Scholar
  29. Moses, J., Wise, F.W.: Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal. Opt. Lett. 31(12), 1881–1883 (2006)CrossRefADSGoogle Scholar
  30. Nielsen, C.K., Jespersen, K.G., Keiding, S.R.: A 158 fs 5 3 nj fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression. Opt. Express 14, 239–244 (2006)Google Scholar
  31. Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)CrossRefADSGoogle Scholar
  32. Riishede, J., Lægsgaard, J., Broeng, J., Bjarklev, A.: All-silica photonic bandgap fibre with zero dispersion and large mode area at 730 nm. J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004)CrossRefADSGoogle Scholar
  33. Roberts, P.J.: Control of dispersion in hollow core photonic crystal fibers. In: CLEO/QELS 2007 Technical Digest, p. CWF2 (2007)Google Scholar
  34. Roberts, P.J., Couny, F., Sabert, H., Mangan, B.J., Williams, D.P., Farr, L., Mason, M.W., Tomlinson, A., Birks, T.A., Knight, J.C., Russell, P.St.J.: Ultimate low loss of hollow core photonic crystal fibres. Opt. Express 13(1), 236–244 (2005)CrossRefADSGoogle Scholar
  35. Sharping, J.E., Foster, M.A., Gaeta, A.L., Lasri, J., Lyngnes, O., Vogel, K.: Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators. Opt. Express 15(4), 1474–1479 (2007)CrossRefADSGoogle Scholar
  36. Siahlo, A.I., Oxenløwe, L.K., Berg, K.S., Clausen, A.T., Andersen, P.A., Peucheret, C., Tersigni, A., Jeppesen, P., Hansen, K.P., Folkenberg, J.R.: A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber. IEEE Photon. Technol. Lett. 15, 1147–1149 (2003)CrossRefADSGoogle Scholar
  37. Wong, G.K.L., Chen, A.Y.H., Murdoch, S.G., Leonhardt, R., Harvey, J.D., Joly, N.Y., Knight, J.C., Wadsworth, W.J., Russell, P.St.J.: Continuous-wave tunable optical parametric generation in a photonic-crystal fiber. J. Opt. Soc. Am. B (Opt. Phys.) 22(11), 2505–2511 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Jesper Lægsgaard
    • 1
  • Peter J. Roberts
    • 1
  • Morten Bache
    • 1
  1. 1.COM-DTUTechnical University of DenmarkLyngbyDenmark

Personalised recommendations